iOS ------ weak的基本原理

1.weak的基本概念

  • weak弱引用,所引用的对象的引用计数不会加一,引用对象被释放的时候会自动设置为nil
  • 多用于解决对象间的相互引用造成内存泄露的循环引用的问题

2.实现原理

Person *object = [[Person alloc] init];
id __weak objc = object;

Runtime维护了一个weak表,用于存储指向某个对象的所有weak指针。weak表其实是一个hash表,key是所指对象的指针,Value是weak指针的地址的集合。

weak的实现原理可以概括为三步:

1,初始化时,runtime会调用objc__initWeak函数,初始化一个新的weak指针指向对象的地址
2,添加引用时,objc__initweak函数会调用objc__storeWeak函数。objc_storeWeak函数的作用是更新指针的指向,创建对应的弱应用表
3,释放时,调用clearDeallocating函数。clearDeallocate函数首先根据对象地址获取所有weak指针地址的数组,然后遍历其中的数据设为nil,最后把这个entry从weak表中删除,清理对象去的记录

初始化时

objc_initWeak方法

// location指针objc , newObj原始对象object
id objc_initWeak(id *location, id newObj) {// 查看原始对象实例是否有效// 无效对象直接导致指针释放if (!newObj) {*location = nil;return nil;}// 这里传递了三个 bool 数值// 使用 template 进行常量参数传递是为了优化性能return storeWeak<false/*old*/, true/*new*/, true/*crash*/>(location, (objc_object*)newObj);
}

该方法有两个参数locationnewObj

  • location:__weak指针的地址,存储指针的地址,这样便可以在最后将其指向的对象置为nil。
  • newObj:所引用的对象。即例子中的object。

objc_storeWeak方法

objc_initWeak方法,在该方法内部调用了storeWeak方法。下面我们来看下storeWeak方法的实现代码

// HaveOld:  true - 变量有值
//          false - 需要被及时清理,当前值可能为 nil
// HaveNew:  true - 需要被分配的新值,当前值可能为 nil
//          false - 不需要分配新值
// CrashIfDeallocating: true - 说明 newObj 已经释放或者 newObj 不支持弱引用,该过程需要暂停
//          false - 用 nil 替代存储
template bool HaveOld, bool HaveNew, bool CrashIfDeallocating>
static id storeWeak(id *location, objc_object *newObj) {// 该过程用来更新弱引用指针的指向// 初始化 previouslyInitializedClass 指针Class previouslyInitializedClass = nil;id oldObj;// 声明两个 SideTable// ① 新旧散列创建SideTable *oldTable;SideTable *newTable;// 获得新值和旧值的锁存位置(用地址作为唯一标示)// 通过地址来建立索引标志,防止桶重复// 下面指向的操作会改变旧值
retry:// 如果weak ptr之前弱引用过一个obj,则将这个obj所对应的SideTable取出,赋值给oldTable,即获取其旧的Tableif (HaveOld) {// 更改指针,获得以 oldObj 为索引所存储的值地址oldObj = *location;oldTable = &SideTables()[oldObj];} else {  // 如果weak ptr之前没有弱引用过一个obj,则oldTable = niloldTable = nil;}// 如果weak ptr要weak引用一个新的obj,则将该obj对应的SideTable取出,赋值给newTableif (HaveNew) {// 更改新值指针,获得以 newObj 为索引所存储的值地址newTable = &SideTables()[newObj];} else {  // 如果weak ptr不需要引用一个新obj,则newTable = nilnewTable = nil;}// 加锁操作,防止多线程中竞争冲突SideTable::lockTwoHaveOld, HaveNew>(oldTable, newTable);// 避免线程冲突重处理// location 应该与 oldObj 保持一致,如果不同,说明当前的 location 已经处理过 oldObj 可是又被其他线程所修改,需要返回上边重新处理if (HaveOld  &&  *location != oldObj) {SideTable::unlockTwoHaveOld, HaveNew>(oldTable, newTable);goto retry;}// 防止弱引用间死锁// 并且通过 +initialize 初始化构造器保证所有弱引用的 isa 非空指向if (HaveNew  &&  newObj) {// 获得新对象的 isa 指针Class cls = newObj->getIsa();// 如果cls还没有初始化,先初始化,再尝试设置weakif (cls != previouslyInitializedClass  &&!((objc_class *)cls)->isInitialized()) {// 解锁SideTable::unlockTwoHaveOld, HaveNew>(oldTable, newTable);// 对其 isa 指针进行初始化_class_initialize(_class_getNonMetaClass(cls, (id)newObj));// 如果该类已经完成执行 +initialize 方法是最理想情况// 如果该类 +initialize 在线程中// 例如 +initialize 正在调用 storeWeak 方法// 需要手动对其增加保护策略,并设置 previouslyInitializedClass 指针进行标记,防止改if分支再次进入previouslyInitializedClass = cls;// 重新获取一遍newObj,这时的newObj应该已经初始化过了goto retry;}}// ② 清除旧值//  如果之前该指针有弱引用过一个obj那就得需要清除之前的弱引用if (HaveOld) {// 如果weak_ptr之前弱引用过别的对象oldObj,则调用weak_unregister_no_lock,在oldObj的weak_entry_t中移除该weak_ptr地址weak_unregister_no_lock(&oldTable->weak_table, oldObj, location);}// ③ 分配新值// 如果weak_ptr需要弱引用新的对象newObjif (HaveNew) {// (1) 调用weak_register_no_lock方法,将weak ptr的地址记录到newObj对应的weak_entry_t中// 如果弱引用被释放 weak_register_no_lock 方法返回 nilnewObj = (objc_object *)weak_register_no_lock(&newTable->weak_table,(id)newObj, location,CrashIfDeallocating);// (2) 更新newObj的isa的weakly_referenced bit标志位if (newObj  &&  !newObj->isTaggedPointer()) {// 弱引用位初始化操作// 引用计数那张散列表的weak引用对象的引用计数中标识为weak引用newObj->setWeaklyReferenced_nolock();}// (3)*location 赋值,也就是将weak ptr直接指向了newObj,也就是确保其指针指向是正确的。可以看到,这里并没有将newObj的引用计数+1*location = (id)newObj;}else {// 没有新值,则无需更改}// 解锁,其他线程可以访问oldTable, newTable了SideTable::unlockTwoHaveOld, HaveNew>(oldTable, newTable);// 返回newObj,此时的newObj与刚传入时相比,设置了weakly-referenced bit位置1return (id)newObj;
}
  • storeWeak方法实际上是接收了5个参数,分别是haveOldhaveNewcrashIfDeallocating,这三个参数都是以模板的方式传入的,是三个bool类型的参数。分别表示weak指针之前是否指向了一个弱引用,weak指针是否需要指向一个新的引用,如果被弱引用的对象正在析构,此时再弱引用该对象是否应该crash
  • 该方法维护了oldTablenewTable分别表示旧的引用弱表和新的弱引用表,它们都是SideTablehash表。
  • 如果weak指针之前指向了一个弱引用,则会调用weak_unregister_no_lock方法,在old Obj的weak_entry_t中移除weak_ptr地址
  • 如果weak指针需要指向一个新的引用,调用weak_register_no_lock方法,将weak_ptr的地址记录到newObj对应的weak_entry_t中
  • 调用setWeaklyReferenced_nolock方法修改weak新引用的对象的weakly_referenced bit标识位(是否有被弱引用指向过)

SideTable结构体

SideTable的定义:

struct SideTable {// 保证原子操作的自旋锁spinlock_t slock;// 引用计数的 hash 表RefcountMap refcnts;// weak 引用全局 hash 表weak_table_t weak_table;
}

主要用于管理对象的引用计数和weak表

  • slock:为了防止竞争选择的自旋锁。
  • refcnts:用来存储OC对象的引用计数的 hash表(仅在未开启isa优化或在isa优化情况下isa_t的引用计数溢出时才会用到)。
  • weak_table:存储对象弱引用指针的hash表。是OC中weak功能实现的核心数据结构。

weak_table_t结构体

再来看看weak_table_t的底层代码

/**全局的弱引用表, 保存object作为key, weak_entry_t作为value* The global weak references table. Stores object ids as keys,* and weak_entry_t structs as their values.*/
struct weak_table_t {// 保存了所有指向特定对象的weak指针集合weak_entry_t *weak_entries;// weak_table_t中有多少个weak_entry_tsize_t    num_entries;// weak_entry_t数组的countuintptr_t mask;// hash key 最大偏移值, // 采用了开放定制法解决hash冲突,超过max_hash_displacement说明weak_table_t中不存在要找的weak_entry_tuintptr_t max_hash_displacement;
};
  • weak_entries:hash数组,用来存储弱引用对象的相关信息weak_entry_t。
  • num_entries:hash数组中的元素个数。
  • mask:hash数组长度-1,会参与hash计算。
  • max_hash_displacement:可能会发生的hash冲突的最大次数,用于判断是否出现了逻辑错误(hash表中的冲突次数绝不会超过改值)

weak_table_t是一个典型的hash结构。weak_entries是一个动态数组,用来存储weak_entry_t类型的元素,这些元素实际上就是OC对象的弱引用信息。

weak_entry_t结构体

weak_entry_t的结构体也是一个hash结构,其存储的元素是弱应用对象指针的指针,通过操作指针的指针,就可以使得weak引用的指针在对象析构后,指向nil。

#define WEAK_INLINE_COUNT 4
#define REFERRERS_OUT_OF_LINE 2typedef objc_object ** weak_referrer_t;struct weak_entry_t {// 所有weak指针指向的特定对象DisguisedPtr<objc_object> referent; // 被弱引用的对象// 共用体,保存weak指针的集合, // 引用个数小于4,用inline_referrers数组。用个数大于4,用动态数组weak_referrer_t *referrersunion {struct {weak_referrer_t *referrers;  // 弱引用该对象的对象指针地址的hash数组uintptr_t        out_of_line : 1;  // 是否使用动态hash数组标记位uintptr_t        num_refs : PTR_MINUS_1;  // hash数组中的元素个数uintptr_t        mask;  // hash数组长度-1,会参与hash计算。(注意,这里是hash数组的长度,而不是元素个数。比如,数组长度可能是64,而元素个数仅存了2个)素个数)。uintptr_t        max_hash_displacement;  // 可能会发生的hash冲突的最大次数,用于判断是否出现了逻辑错误(hash表中的冲突次数绝不会超过改值)};struct {// out_of_line=0 is LSB of one of these (don't care which)weak_referrer_t  inline_referrers[WEAK_INLINE_COUNT];};}
}
  • out_of_line:标志位。标志着weak_entry_t中是用数组保存还是hash表保存weak指针。
  • num_refs:引用计数。这里记录weak_entry_t表中weak指针的数量。
  • mask:weak_entry_t->referrers数组的count。
  • max_hash_displacement:hash key 最大偏移值, 采用了开放定制法解决hash冲突,超过+ max_hash_displacement说明weak_entry_t中不存在要找的weak_entry_t。

其中out_of_line的值通常情况下是等于零的,所以弱引用表总是一个objc_objective指针数组,当超过4时, 会变成hash

添加引用时

objc_initWeak函数会调用objc_storeWeak() 函数, objc_storeWeak() 的作用是更新指针指向,创建对应的弱引用表。

weak_register_no_lock方法

新对象添加注册操作weak_register_no_lock,通过weak_register_no_lock函数把新的对象进行注册操作,完成与对应的弱引用表进行绑定操作

/*	weak_table:weak_table_t结构类型的全局的弱引用表。referent_id:weak指针所指的对象。*referrer_id:weak修饰的指针的地址。crashIfDeallocating:如果被弱引用的对象正在析构,此时再弱引用该对象是否应该crash。
*/
id
weak_register_no_lock(weak_table_t *weak_table, id referent_id,id *referrer_id, bool crashIfDeallocating)
{objc_object *referent = (objc_object *)referent_id;objc_object **referrer = (objc_object **)referrer_id;// 如果referent为nil 或 referent 采用了TaggedPointer计数方式,直接返回,不做任何操作if (!referent  ||  referent->isTaggedPointer()) return referent_id;// 确保被引用的对象可用(没有在析构,同时应该支持weak引用)bool deallocating;if (!referent->ISA()->hasCustomRR()) {deallocating = referent->rootIsDeallocating();}else {  //不能被weak引用,直接返回nilBOOL (*allowsWeakReference)(objc_object *, SEL) =(BOOL(*)(objc_object *, SEL))object_getMethodImplementation((id)referent,SEL_allowsWeakReference);if ((IMP)allowsWeakReference == _objc_msgForward) {return nil;}deallocating =! (*allowsWeakReference)(referent, SEL_allowsWeakReference);}// 正在析构的对象,不能够被弱引用if (deallocating) {if (crashIfDeallocating) {_objc_fatal("Cannot form weak reference to instance (%p) of ""class %s. It is possible that this object was ""over-released, or is in the process of deallocation.",(void*)referent, object_getClassName((id)referent));} else {return nil;}}// now remember it and where it is being stored// 在 weak_table中找到referent对应的weak_entry,并将referrer加入到weak_entry中weak_entry_t *entry;if ((entry = weak_entry_for_referent(weak_table, referent))) { // 如果能找到weak_entry,则讲referrer插入到weak_entry中append_referrer(entry, referrer);     // 将referrer插入到weak_entry_t的引用数组中}else { // 如果找不到,就新建一个weak_entry_t new_entry(referent, referrer);weak_grow_maybe(weak_table);weak_entry_insert(weak_table, &new_entry);}// Do not set *referrer. objc_storeWeak() requires that the// value not change.return referent_id;
}
  • 如果referent为nil或referent采用了TaggedPointer计数方式,直接返回,不做任何操作。
  • 如果对象不能被weak引用,直接返回nil。
  • 如果对象正在析构,则抛出异常。
  • 如果对象没有再析构且可以被weak引用,则调用weak_entry_for_referent方法根据弱引用
    对象的地址从弱引用表中找到对应的weak_entry,如果能够找到则调用append_referrer方法向其中插入weak指针地址。否则新建一个weak_entry
weak_entry_for_referent取entry
static weak_entry_t *
weak_entry_for_referent(weak_table_t *weak_table, objc_object *referent)
{assert(referent);weak_entry_t *weak_entries = weak_table->weak_entries;if (!weak_entries) return nil;size_t begin = hash_pointer(referent) & weak_table->mask;  // 这里通过 & weak_table->mask的位操作,来确保index不会越界size_t index = begin;size_t hash_displacement = 0;while (weak_table->weak_entries[index].referent != referent) {index = (index+1) & weak_table->mask;// index == begin 意味着数组绕了一圈都没有找到合适位置,这时候一定是出了什么问题。if (index == begin) bad_weak_table(weak_table->weak_entries); // 触发bad weak table crashhash_displacement++;if (hash_displacement > weak_table->max_hash_displacement) { // 当hash冲突超过了可能的max hash 冲突时,说明元素没有在hash表中,返回nilreturn nil;}}//返回找到的元素return &weak_table->weak_entries[index];
}
append_referrer添加元素
static void append_referrer(weak_entry_t *entry, objc_object **new_referrer)
{// 如果weak_entry 尚未使用动态数组,走这里if (! entry->out_of_line()) {// Try to insert inline.for (size_t i = 0; i < WEAK_INLINE_COUNT; i++) {// 找到一个空位直接插入,结束返回if (entry->inline_referrers[i] == nil) {entry->inline_referrers[i] = new_referrer;return;}}// 如果inline_referrers的位置已经存满了,则要转型为referrers,做动态数组。// Couldn't insert inline. Allocate out of line.//  创建一个动态数组,并将之前的静态数组的值都赋给动态数组weak_referrer_t *new_referrers = (weak_referrer_t *)calloc(WEAK_INLINE_COUNT, sizeof(weak_referrer_t));// This constructed table is invalid, but grow_refs_and_insert// will fix it and rehash it.for (size_t i = 0; i < WEAK_INLINE_COUNT; i++) {new_referrers[i] = entry->inline_referrers[I];}entry->referrers = new_referrers;entry->num_refs = WEAK_INLINE_COUNT;entry->out_of_line_ness = REFERRERS_OUT_OF_LINE;entry->mask = WEAK_INLINE_COUNT-1;entry->max_hash_displacement = 0;}// 对于动态数组的附加处理:assert(entry->out_of_line()); // 断言:此时一定使用的动态数组// 如果动态数组中元素个数大于或等于数组位置总空间的3/4,则扩展数组空间为当前长度的一倍if (entry->num_refs >= TABLE_SIZE(entry) * 3/4) { // 扩容,并插入return grow_refs_and_insert(entry, new_referrer);}// 如果不需要扩容,直接插入到weak_entry中// 注意,weak_entry是一个哈希表,key:w_hash_pointer(new_referrer) value: new_referrer// 细心的人可能注意到了,这里weak_entry_t 的hash算法和 weak_table_t的hash算法是一样的,同时扩容/减容的算法也是一样的size_t begin = w_hash_pointer(new_referrer) & (entry->mask); // '& (entry->mask)' 确保了 begin的位置只能大于或等于 数组的长度size_t index = begin;  // 初始的hash indexsize_t hash_displacement = 0;  // 用于记录hash冲突的次数,也就是hash再位移的次数//  使用循环找到一个合适的空位while (entry->referrers[index] != nil) {hash_displacement++;index = (index+1) & entry->mask;  // index + 1, 移到下一个位置,再试一次能否插入。(这里要考虑到entry->mask取值,一定是:0x111, 0x1111, 0x11111, ... ,因为数组每次都是*2增长,即8, 16, 32,对应动态数组空间长度-1的mask,也就是前面的取值。)if (index == begin) bad_weak_table(entry); // index == begin 意味着数组绕了一圈都没有找到合适位置,这时候一定是出了什么问题。}// 记录最大的hash冲突次数, max_hash_displacement意味着: 我们尝试至多max_hash_displacement次,肯定能够找到object对应的hash位置if (hash_displacement > entry->max_hash_displacement) { entry->max_hash_displacement = hash_displacement;}// 将值插入刚才找到的hash表的空位,同时,更新元素个数num_refsweak_referrer_t &ref = entry->referrers[index];ref = new_referrer;entry->num_refs++;
}

这段代码就是实现了元素的插入,分为静态数组插入和动态数组插入,其中还加了静态数组到动态数组的变换。

移除引用

如果weak指针之前指向了一个弱引用,则会调用weak_unregister_no_lock方法将旧的weak指针地址移除。

weak_unregister_no_lock方法

void
weak_unregister_no_lock(weak_table_t *weak_table, id referent_id,id *referrer_id)
{objc_object *referent = (objc_object *)referent_id;objc_object **referrer = (objc_object **)referrer_id;weak_entry_t *entry;//  弱引用对象为nil不存在,直接返回if (!referent) return;// 查找到referent所对应的weak_entry_tif ((entry = weak_entry_for_referent(weak_table, referent))) { remove_referrer(entry, referrer);  // 在referent所对应的weak_entry_t的hash数组中,移除referrer// 移除元素之后, 要检查一下weak_entry_t的hash数组是否已经空了bool empty = true;if (entry->out_of_line()  &&  entry->num_refs != 0) {empty = false;}else {for (size_t i = 0; i < WEAK_INLINE_COUNT; i++) {if (entry->inline_referrers[i]) {empty = false;break;}}}// 如果weak_entry_t的hash数组已经空了,则需要将weak_entry_t从weak_table中移除if (empty) {weak_entry_remove(weak_table, entry);}}return;
}
  • 首先,它会在weak_table中找出referent对应的weak_entry_t。
  • 在weak_entry_t中移除referrer。
  • 移除元素后,判断此时weak_entry_t中是否还有元素 (empty==true?)。
  • 如果此时weak_entry_t已经没有元素了,则需要将weak_entry_t从weak_table中移除。

释放时

当weak引用指向的对象被释放时,又是如何去处理weak指针的?

调用clearDealocating函数。clearDeallocating函数根据对象地址获取所有weak指针地址的数组,然后遍历数组把其中的数据设为nil,最后把entryweak表清除,最后清理对象的记录。

clearDeallocating方法

inline void 
objc_object::clearDeallocating()
{//  判断对象是否采用了优化isa引用计数if (slowpath(!isa.nonpointer)) {// Slow path for raw pointer isa.//  如果没有的话则需要清理对象存储在SideTable中的引用计数数据sidetable_clearDeallocating();}//  如果对象采用了优化isa引用计数,则判断是否有使用weak引用(isa.weakly_referenced)或者有使用SideTable的辅助引用计数(isa.has_sidetable_rc),符合这两种情况中一种的,调用clearDeallocating_slow方法。else if (slowpath(isa.weakly_referenced  ||  isa.has_sidetable_rc)) {// Slow path for non-pointer isa with weak refs and/or side table data.clearDeallocating_slow();}assert(!sidetable_present());
}

clearDeallocating_slow方法

NEVER_INLINE void
objc_object::clearDeallocating_slow()
{assert(isa.nonpointer  &&  (isa.weakly_referenced || isa.has_sidetable_rc));// 在全局的SideTables中,以this指针为key,找到对应的SideTableSideTable& table = SideTables()[this];//  上锁table.lock();// 如果obj被弱引用if (isa.weakly_referenced) {// 在SideTable的weak_table中对this进行清理工作weak_clear_no_lock(&table.weak_table, (id)this);}// 如果采用了SideTable做引用计数if (isa.has_sidetable_rc) {// 在SideTable的引用计数中移除thistable.refcnts.erase(this);}//  解锁table.unlock();
}

这里调用了weak_clear_no_lock来做weak_table的清理工作。

void 
weak_clear_no_lock(weak_table_t *weak_table, id referent_id) 
{objc_object *referent = (objc_object *)referent_id;// 找到referent在weak_table中对应的weak_entry_tweak_entry_t *entry = weak_entry_for_referent(weak_table, referent);if (entry == nil) {/// XXX shouldn't happen, but does with mismatched CF/objc//printf("XXX no entry for clear deallocating %p\n", referent);return;}// zero out referencesweak_referrer_t *referrers;size_t count;// 找出weak引用referent的weak 指针地址数组以及数组长度if (entry->out_of_line()) {  //  如果是动态数组referrers = entry->referrers;count = TABLE_SIZE(entry);}else {  //  如果是静态数组referrers = entry->inline_referrers;count = WEAK_INLINE_COUNT;}for (size_t i = 0; i < count; ++i) {// 取出每个weak ptr的地址objc_object **referrer = referrers[i];if (referrer) {// 如果weak ptr确实weak引用了referent,则将weak ptr设置为nil,这也就是为什么weak 指针会自动设置为nil的原因if (*referrer == referent) {*referrer = nil;}else if (*referrer) { // 如果所存储的weak ptr没有weak 引用referent,这可能是由于runtime代码的逻辑错误引起的,报错_objc_inform("__weak variable at %p holds %p instead of %p. ""This is probably incorrect use of ""objc_storeWeak() and objc_loadWeak(). ""Break on objc_weak_error to debug.\n",referrer, (void*)*referrer, (void*)referent);objc_weak_error();}}}// 由于referent要被释放了,因此referent的weak_entry_t也要移除出weak_tableweak_entry_remove(weak_table, entry);
}

objc_clear_deallocating该函数的动作如下:

  • 找到referent在weak_table中对应的weak_entry_t
  • 如果weak ptr确实weak引用了referent,则将weak ptr设置为nil,这也就是为什么weak 指针会自动设置为nil
  • 由于referent要被释放了,因此referent的weak_entry_t也要移除出weak_table

总结:

  • weak的原理在底层维护了一张weak_table_t结构的hash表,key是所致对象的地址,value是weak指针的地址数组(weak_entry_t)
    • 如果weak指针之前指向了一个弱引用,则会调用weak_unregister_no_lock方法,在old Obj的weak_entry_t中移除weak_ptr地址
  • 如果weak指针需要指向一个新的引用,调用weak_register_no_lock方法,将weak_ptr的地址记录到newObj对应的weak_entry_t
  • 对象释放时,调用clearDeallocating函数根据对象地址获取所有weak指针地址的数组,然后遍历这个数组把其中的数据设为nil,最后把这个entryweak表中删除,最后清理对象的记录。
  • 本文介绍了SideTable、weak_table_t、weak_entry_t这样三个结构,它们之间的关系如下图所示。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/874545.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Redis 7.x 系列【26】集群模式动态扩容、动态缩容

有道无术&#xff0c;术尚可求&#xff0c;有术无道&#xff0c;止于术。 本系列Redis 版本 7.2.5 源码地址&#xff1a;https://gitee.com/pearl-organization/study-redis-demo 文章目录 1. 动态扩容1.1 安装、启动1.2 加入新节点1.3 分配哈希槽1.4 加入从节点 2. 缩容2.1 删…

护眼灯和普通台灯有什么区别?解密护眼灯行业常见的四大选购套路

护眼灯和普通台灯有什么区别&#xff1f;随着护眼台灯的普及&#xff0c;市场上涌现了许多新兴品牌。然而&#xff0c;并非所有品牌都具备专业的技术研发实力。因此&#xff0c;网络上关于护眼台灯的各种问题也日益增多&#xff0c;如耐磨性差、耐高温性不足&#xff0c;甚至可…

python实现图像缩放算法

图像缩放算法 1.最近邻插值图像缩放算法详解算法步骤Python 实现详细解释 优缺点2.双线性插值图像缩放算法详解算法步骤Python 实现详细解释 优缺点3.双三次插值图像缩放算法详解算法步骤Python 实现详细解释 优缺点 1.最近邻插值图像缩放算法详解 最近邻插值&#xff08;Near…

go-kratos 学习笔记(4) 服务注册与发现 nacos注册

接口实现​ Registry 接口分为两个&#xff0c;Registrar 为实例注册和反注册&#xff0c;Discovery 为服务实例列表获取 type Registrar interface {// 注册实例Register(ctx context.Context, service *ServiceInstance) error// 反注册实例Deregister(ctx context.Context…

ubuntu系统vscode调试c/c++大中型项目

文章目录 1. 插件2. 项目工程3. vsode的配置setting.jsonc_cpp_properties.json 4. 启动调试 前置阅读 vscode调试第一篇 1. 插件 c/c, cmake, cmake tools 2. 项目工程 对于我的项目需要用到很多的三方库&#xff0c;三方库的版本又会有很多&#xff0c;一般都是用cmake编译…

QT写一个mainWindow

切换风格的写法&#xff1a; 先看看样式效果&#xff1a; mian_window.h文件 #ifndef MAINWINDOW_H #define MAINWINDOW_H#include <QMainWindow>class MainWindow : public QMainWindow {Q_OBJECTpublic:MainWindow(QWidget *parent nullptr);~MainWindow();void Ini…

对比预测编码表示学习

对比预测编码表示学习 引言 文章主要提出如下几点&#xff1a;首先将高维数据压缩到更加紧凑的潜在嵌入&#xff08;latent embdding&#xff09;空间&#xff0c;在这个空间中条件预测更容易被建模。第二&#xff0c;在这个潜在空间中使用自回归模型&#xff0c;以对未来的多…

DC系列靶场---DC 2靶场的渗透测试(一)

信息收集 Nmap扫描 nmap -sV -p- -sC -T4 172.30.1.141 域名解析 echo 172.30.1.141 dc-2 >> /etc/hosts 目录枚举 gobuster dir -u http://172.30.1.141 -w work/lab/CTF/ATT_CK_01/SecLists-master/Discovery/Web-Content/big.txt -x .php,.rar,.html,.zip -t 20 -b…

探索XEX数字资产交易的优势与操作指南

随着数字资产市场的快速发展&#xff0c;越来越多的投资者开始关注并参与其中。XEX交易所作为一个新兴的数字资产交易平台&#xff0c;以其用户友好的界面和高效的交易服务&#xff0c;迅速吸引了大量用户。本文将介绍XEX数字资产交易的主要特点和优势&#xff0c;帮助新手更好…

物联网在电力行业的应用

作者主页: 知孤云出岫 这里写目录标题 作者主页:物联网在电力行业的应用简介主要应用领域代码案例分析1. 智能电表数据采集和分析2. 设备监控和预测性维护3. 能耗管理和优化4. 电力负载预测5. 分布式能源管理6. 电动汽车充电管理7. 电网安全与故障检测 物联网在电力行业的应用…

python+onlyoffice+vue3项目实战20240722笔记,环境搭建和前后端基础代码

开发后端 先创建data目录,然后在data目录下创建一个test.docx测试文档。 后端代码: import json import req import api from api import middleware, PlainTextResponseasync def doc_callback(request):data = await api.req.get_json(request)print("callback ==…

数据结构——堆(C语言版)

树 树的概念&#xff1a; 树&#xff08;Tree&#xff09;是一种抽象数据结构&#xff0c;它由节点&#xff08;node&#xff09;的集合组成&#xff0c;这些节点通过边相连&#xff0c;把 节点集合按照逻辑顺序抽象成图像&#xff0c;看起来就像一个倒挂着的树&#xff0c;也…

使用C#手搓Word插件

WordTools主要功能介绍 编码语言&#xff1a;C#【VSTO】 1、选择 1.1、表格 作用&#xff1a;全选文档中的表格&#xff1b; 1.2、表头 作用&#xff1a;全选文档所有表格的表头【第一行】&#xff1b; 1.3、表正文 全选文档中所有表格的除表头部分【除第一行部分】 1.…

java面向对象进阶篇--《多态》

目录 一、前言 二、认识多态 方法重写&#xff08;Override&#xff09;&#xff1a; 方法重载&#xff08;Overload&#xff09;&#xff1a; 示例&#xff1a; Person类&#xff08;父类&#xff09; Administrator&#xff08;子类&#xff09; Student&#xff08;子…

docker搭建ES 8.14 集群

参考&#xff1a;【docker搭建es8集群kibana】_docker 安装生产级 es 8.14 集群-CSDN博客 1、之前已搭建一台单机版的dockerES集群 参见 Elasticsearch docker 安装_docker 安装es8.14.3-CSDN博客 2、现在需要重新搭建为docker ES集群 准备新搭建3个点 一、准备工作 提前开…

构建网络安全之盾:应对“微软蓝屏”教训的全面策略

✨✨ 欢迎大家来访Srlua的博文&#xff08;づ&#xffe3;3&#xffe3;&#xff09;づ╭❤&#xff5e;✨✨ &#x1f31f;&#x1f31f; 欢迎各位亲爱的读者&#xff0c;感谢你们抽出宝贵的时间来阅读我的文章。 我是Srlua小谢&#xff0c;在这里我会分享我的知识和经验。&am…

深度学习模型Transformer结构

Transformer结构是一种基于自注意力&#xff08;Self-Attention&#xff09;机制的深度学习模型&#xff0c;最初由Vaswani等人在2017年的论文《Attention Is All You Need》中提出&#xff0c;用于解决自然语言处理&#xff08;NLP&#xff09;领域的任务&#xff0c;如机器翻…

MySQL --- 库的操作

一、创建数据库 create database [ if not exists ] 数据库名; // []中的为可选项 在创建库时&#xff0c;也可以指定数据库采用的字符集(character set)和数据库字符集的校验规则(collate) (当我们创建数据库没有指定字符集和校验规则时&#xff0c;系统使用默认字符集&#x…

【复习】软件工程

软件危机是指在计算机软件的开发和维护过程中所遇到的一系列严重问题。 典型表现&#xff1a; 开发成本和进度的估计常常很不准确 用户对已完成的软件系统不满意&#xff0c;闭门造车 软件质量&#xff08;quality&#xff09;不可靠 软件常常是不可维护的 软件产品供不应…

css技巧混合模式

看上面这个神奇的效果&#xff0c;文字在黑色背景里面显示为白色&#xff0c;而在白色的背景里面显示为黑色&#xff0c;这就是文字智能适配背景。 看到这样的需求&#xff0c;大多数人第一时间想到的是&#xff0c;文字元素有两个&#xff0c;是完全重叠的两层&#xff0c;一…