R语言画散点图-饼图-折线图-柱状图-箱线图-直方图-等高线图-曲线图-热力图-雷达图-韦恩图(二D)

R语言画散点图-饼图-折线图-柱状图-箱线图-直方图-等高线图-曲线图-热力图-雷达图-韦恩图(二D)

  • 散点图
    • 示例
    • 解析
    • 效果
  • 饼图
    • 示例
    • 解析
    • 效果
  • 折线图
    • 示例
    • 解析
    • 效果
  • 柱状图
    • 示例
    • 解析
    • 效果
  • 箱线图
    • 示例
    • 解析
    • 效果
  • 直方图
    • 示例
    • 解析
    • 效果
  • 等高线图
    • 使用filled.contour函数
      • 示例
      • 解析
      • 效果
    • 使用 ggplot2 包
      • 示例
      • 效果
    • 使用 lattice 包
      • 示例
      • 效果
  • 曲线图
    • 使用 curve() 函数
      • 示例
      • 效果
    • 使用 plot() 函数
      • 示例
      • 效果
    • 使用 ggplot2 包绘制
      • 示例
      • 解析
      • 效果
  • 热力图
    • 使用 heatmap() 函数
      • 示例
      • 效果
    • 使用 pheatmap 包
      • 示例
      • 效果
    • 使用 ggplot2 包和 geom_tile() 函数
      • 示例
      • 解析
      • 效果
  • 雷达图
    • 示例
    • 解析
    • 效果
  • 韦恩图
    • 示例
    • 解析
    • 效果

散点图

使用基础的plot()函数可以很容易地绘制散点图~ 散点图通常用于展示两个连续变量之间的关系,例如显示其之间的相关性或者分布情况

示例

假设有如下数据集 data,包含了两个变量 x 和 y:

# 创建示例数据集
set.seed(123)  # 设置随机种子以确保示例的可重现性
data <- data.frame(x = rnorm(100),   # 随机生成100个符合标准正态分布的x值y = rnorm(100)    # 随机生成100个符合标准正态分布的y值
)# 绘制散点图
plot(data$x, data$y,main = "散点图示例",          # 图表标题xlab = "变量X",               # x轴标签ylab = "变量Y",               # y轴标签col = "blue",                 # 散点颜色pch = 16,                     # 散点形状(16表示实心圆)xlim = c(-3, 3),              # x轴范围ylim = c(-3, 3)               # y轴范围
)

解析

1. 创建数据集

  • 使用 rnorm(100) 生成了符合标准正态分布的随机数据作为示例的 x 和 y 变量

2. 绘制散点图

  • plot(data x , d a t a x, data x,datay, …):使用 plot() 函数绘制散点图,其中 data x 和 d a t a x 和 data xdatay 分别是数据集中的 x 和 y 变量
  • main, xlab, ylab 分别设置图表的标题和轴标签
  • col 设置散点的颜色为蓝色
  • pch 设置散点的形状为实心圆(16表示实心圆,可以根据需要选择不同的形状)
  • xlim 和 ylim 分别设置了 x 轴和 y 轴的显示范围

效果

在这里插入图片描述

饼图

画饼图通常使用pie()函数来实现,饼图适合用于展示各部分占整体的比例关系,如市场份额、各类别的比例等

示例

假设有如下数据集 data,包含了各部分的名称和相应的数值:

# 创建示例数据集
data <- c(25, 35, 20, 10, 10)  # 各部分的数值,总和为100%# 部分的标签
labels <- c("部分1", "部分2", "部分3", "部分4", "部分5")# 颜色
colors <- c("red", "orange", "yellow", "green", "blue")# 绘制饼图
pie(data, labels = labels, col = colors,main = "饼图示例",        # 图表标题clockwise = TRUE,        # 是否顺时针显示,默认为TRUEradius = 1               # 饼图半径,默认为1
)

解析

1. 创建数据集:

  • data 含有各部分的数值,这些数值表示每个部分占整体的百分比。在示例中,总和为100%
  • labels 包含了每个部分的标签,用于在饼图中显示每个部分的名称
  • colors 是一个向量,用于指定每个部分的颜色。在示例中,使用了五种颜色来区分不同的部分

2. 绘制饼图:

  • pie(data, labels = labels, col = colors, …):使用 pie() 函数绘制饼图
  • labels = labels 将 labels 中的标签应用到相应的部分
  • col = colors 指定每个部分的颜色
  • main = “饼图示例” 设置饼图的标题
  • clockwise = TRUE 表示饼图的部分按顺时针方向显示
  • radius = 1 设置饼图的半径,默认为1

效果

在这里插入图片描述

折线图

画折线图通常使用plot()函数或者更专门用于绘制折线图的plot()函数来实现。折线图适合展示随时间变化的数据趋势或者连续变量之间的关系

示例

假设有如下数据集 data,包含了随时间变化的两个连续变量 time 和 value:

# 创建示例数据集
set.seed(123)  # 设置随机种子以确保示例的可重现性
data <- data.frame(time = 1:10,              # 时间序列,假设为10个时间点value = cumsum(rnorm(10)) # 随机生成的累积值,模拟随时间变化的数据
)# 绘制折线图
plot(data$time, data$value,type = "l",                   # 指定绘制类型为折线图main = "折线图示例",           # 图表标题xlab = "时间",                 # x轴标签ylab = "数值",                 # y轴标签col = "red",                  # 折线颜色lwd = 2                        # 折线宽度
)

解析

1. 创建数据集:

  • data$time 是时间序列,假设为1到10,代表数据的时间点
  • data$value 是随时间变化的数据值,使用 cumsum(rnorm(10)) 生成了一个随机累积值序列,模拟随时间变化的数据趋势

2. 绘制折线图:

  • plot(data t i m e , d a t a time, data time,datavalue, …):使用 plot() 函数绘制折线图
  • type = “l” 指定绘制类型为折线图,这样会连接各个数据点形成折线
  • main = “折线图示例” 设置图表的标题
  • xlab = “时间” 和 ylab = “数值” 分别设置 x 轴和 y 轴的标签
  • col = “red” 设置折线的颜色为红色
  • lwd = 2 设置折线的宽度为2个像素

效果

在这里插入图片描述

柱状图

画柱状图通常会使用barplot()函数来实现。柱状图适合用于比较不同类别之间的数据量或者频率

示例

假设有如下数据集 data,包含了各类别的数值:

# 创建示例数据集
data <- c(10, 20, 15, 25, 30)  # 各类别的数值# 类别的标签
names <- c("类别1", "类别2", "类别3", "类别4", "类别5")# 绘制柱状图
barplot(data, names.arg = names,main = "柱状图示例",       # 图表标题xlab = "类别",            # x轴标签ylab = "数值",            # y轴标签col = "skyblue",         # 柱子的填充颜色ylim = c(0, 35)           # y轴范围
)

解析

1. 创建数据集:

  • data 包含各个类别的数值,这些数值将用来绘制柱状图
  • names 包含每个类别的名称,用于在柱状图中显示类别标签

2. 绘制柱状图:

  • barplot(data, names.arg = names, …):使用 barplot() 函数绘制柱状图
  • names.arg = names 将 names 中的标签应用到相应的柱子上
  • main = “柱状图示例” 设置图表的标题
  • xlab = “类别” 和 ylab = “数值” 分别设置 x 轴和 y 轴的标签
  • col = “skyblue” 设置柱子的填充颜色为天蓝色
  • ylim = c(0, 35) 设置 y 轴的显示范围,确保柱状图的高度合适显示

效果

在这里插入图片描述

箱线图

画箱线图通常可以使用boxplot()函数,箱线图常用于展示数据的分布情况,包括数据的中位数、四分位数、异常值等信息

示例

假设有如下数据集 data,包含了一组数据:

# 创建示例数据集
set.seed(123)  # 设置随机种子以确保示例的可重现性
data <- list(group1 = rnorm(100, mean = 0, sd = 1),    # 第一组数据,符合标准正态分布group2 = rnorm(100, mean = 1, sd = 1)      # 第二组数据,均值为1的正态分布
)# 绘制箱线图
boxplot(data,names = c("组别1", "组别2"),   # 设置每组数据的名称main = "箱线图示例",           # 图表标题xlab = "组别",                  # x轴标签ylab = "数据值",                # y轴标签col = c("skyblue", "salmon")   # 箱体的填充颜色
)

解析

1. 创建数据集:

  • data 包含两组数据,每组数据有100个样本
  • group1 是符合标准正态分布的数据
  • group2 是均值为1的正态分布数据

2. 绘制箱线图:

  • boxplot(data, …):使用 boxplot() 函数绘制箱线图
  • names = c(“组别1”, “组别2”) 设置每组数据的名称
  • main = “箱线图示例” 设置图表的标题
  • xlab = “组别” 和 ylab = “数据值” 分别设置 x 轴和 y 轴的标签
  • col = c(“skyblue”, “salmon”) 设置箱体的填充颜色,分别对应两组数据

效果

在这里插入图片描述

直方图

直方图是一种展示数据分布的常用图形,它通过将数据范围分成若干个连续的区间,并用矩形的面积来表示在每个区间内数据点的频数或频率,直方图可以直观地了解数据的分布形态,如数据的集中趋势、分散程度和异常值等

示例

# 创建示例数据集
set.seed(123)  # 设置随机种子以确保示例的可重现性
data <- rnorm(500)  # 生成500个符合正态分布的随机数# 绘制直方图
hist(data,main = "直方图示例",       # 图表标题xlab = "数据值",           # x轴标签ylab = "频数",            # y轴标签col = "lightblue",        # 矩形填充颜色breaks = 20,              # 设置区间的数量border = "black"          # 矩形边框颜色
)

解析

1. 创建数据集:

  • 使用rnorm(500)生成500个符合标准正态分布的随机数作为示例数据

2. 绘制直方图:

  • hist(data, …):使用hist()函数绘制直方图
  • main = "直方图示例"设置图表的标题
  • xlab = "数据值"和ylab = "频数"分别设置x轴和y轴的标签
  • col = "lightblue"设置矩形填充颜色为浅蓝色
  • breaks = 20指定数据范围被分成20个区间来绘制直方图。这个参数会影响直方图的平滑度和细节展示
  • border = "black"设置了矩形边框颜色为黑色。

效果

在这里插入图片描述

等高线图

地形图也可以被称为等高线图或者地形等高分布图,可使用contour函数来创建2D等高线图,该函数通常与filled.contour一起使用以创建填充的等高线图,这样可以更好地表示地形特征

使用filled.contour函数

示例

# 创建数据
x <- seq(-10, 10, length.out = 100)
y <- seq(-10, 10, length.out = 100)
z <- outer(x, y, function(x, y) {r <- sqrt(x^2 + y^2)10 * sin(r) / r
})# 绘制填充的等高线图
filled.contour(x, y, z,color.palette = terrain.colors,  # 使用地形颜色plot.title = title("2D Terrain Contour Plot"),plot.axes = {axis(1)axis(2)},key.title = title("Height"),key.axes = axis(4, seq(-10, 10, by = 2), las = 2),xlab = "X-axis",ylab = "Y-axis"
)

解析

首先创建了一个网格的x和y值,然后使用outer函数来计算每个网格点上的z值(地形高度)
filled.contour函数用于绘制填充的等高线图,其中color.palette参数设置为terrain.colors以使用适合地形的颜色方案。同时也添加了标题、坐标轴标签

效果

在这里插入图片描述

使用 ggplot2 包

示例

# 安装和加载ggplot2包
install.packages("ggplot2")
library(ggplot2)# 创建数据
x <- seq(-10, 10, length.out = 100)
y <- seq(-10, 10, length.out = 100)
z <- outer(x, y, function(x, y) {r <- sqrt(x^2 + y^2)10 * sin(r) / r
})# 将数据转换为data frame
data <- expand.grid(X = x, Y = y)
data$Z <- as.vector(z)# 绘制等高线图
ggplot(data, aes(x = X, y = Y, z = Z)) +geom_contour_filled() +labs(title = "2D Terrain Contour Plot", x = "X-axis", y = "Y-axis") +theme_minimal()

效果

在这里插入图片描述

使用 lattice 包

示例

# 安装和加载lattice包
install.packages("lattice")
library(lattice)# 创建数据
x <- seq(-10, 10, length.out = 100)
y <- seq(-10, 10, length.out = 100)
z <- outer(x, y, function(x, y) {r <- sqrt(x^2 + y^2)10 * sin(r) / r
})# 将数据转换为data frame
data <- expand.grid(X = x, Y = y)
data$Z <- as.vector(z)# 绘制等高线图
levelplot(Z ~ X * Y, data = data,col.regions = terrain.colors,main = "2D Terrain Contour Plot",xlab = "X-axis", ylab = "Y-axis")

效果

在这里插入图片描述

曲线图

绘制曲线图主要用于展示函数或曲线的形状和变化。可使用基本的 plot() 函数或 curve() 函数来绘制曲线图

使用 curve() 函数

curve() 函数用于绘制数学函数的曲线图。这个函数特别适合用于绘制连续的数学函数曲线

示例

# 绘制正态分布函数的曲线图
curve(dnorm(x, mean = 0, sd = 1), from = -4, to = 4,main = "正态分布曲线图",xlab = "X轴",ylab = "Y轴",col = "blue",lwd = 2)

效果

在这里插入图片描述

使用 plot() 函数

如果需要画离散的数据点,或想要绘制自定义的曲线,可以使用 plot() 函数配合 lines() 或 points() 函数来实现

示例

# 创建自定义数据
x <- seq(-2, 2, length.out = 100)  # 创建从-2到2的100个均匀分布的点
y <- x^3  # 计算每个点的立方值# 绘制曲线图
plot(x, y, type = "l", col = "red", lwd = 2,main = "自定义曲线图",xlab = "X轴",ylab = "Y轴")

效果

在这里插入图片描述

使用 ggplot2 包绘制

ggplot2 是一个强大的绘图系统,不必过多阐述~ 其可用于绘制更复杂的图形

示例

# 加载ggplot2包
library(ggplot2)# 创建数据框
data <- data.frame(x = seq(-2, 2, length.out = 100),y = seq(-2, 2, length.out = 100)^3
)# 绘制曲线图
ggplot(data, aes(x = x, y = y)) +geom_line(color = "blue", size = 1) +labs(title = "自定义曲线图",x = "X轴",y = "Y轴") +theme_minimal()

解析

1. 使用 curve()函数:

  • curve(dnorm(x, mean = 0, sd = 1), from = -4, to = 4, …) 用于绘制正态分布曲线,其中 dnorm() 是正态分布的密度函数
  • from 和 to 参数设置x轴的范围
  • col 和 lwd 参数设置曲线的颜色和宽度

2. 使用 plot()和 lines()函数:

  • plot(x, y, type = “l”, …) 绘制自定义的数据点,并使用 type = “l” 参数指定绘制线条
  • x 和 y 是x轴和y轴的数值。

3. 使用 ggplot2包:

  • ggplot(data, aes(x = x, y = y)) 创建一个基本的 ggplot 对象
  • geom_line() 绘制曲线
  • labs() 设置标题和轴标签
  • theme_minimal() 设置图表的主题样式

效果

在这里插入图片描述

热力图

热力图是一种用于可视化矩阵数据中数值大小的图形,通过颜色编码展示数据的强度或密度。热力图常用于展示数据的模式和关系,特别是在数据分析和生物信息学中

使用 heatmap() 函数

heatmap() 是R基础包中提供的一个函数,用于绘制简单的热力图。它适合于处理矩阵形式的数据,并能够展示数据的相对大小

示例

# 创建示例数据集
set.seed(123)  # 设置随机种子以确保结果的可重现性
matrix_data <- matrix(rnorm(100), nrow = 10)  # 生成10x10的随机矩阵数据# 绘制热力图
heatmap(matrix_data,main = "热力图示例",xlab = "列",ylab = "行",col = cm.colors(256),  # 颜色选择scale = "none",        # 不对数据进行标准化margins = c(5, 10)     # 设置边距
)

效果

在这里插入图片描述

使用 pheatmap 包

pheatmap 包提供更多定制选项和改进的热力图功能,适用于更复杂的数据可视化

示例

需先确保已安装了 pheatmap 包:

install.packages("pheatmap")
# 加载pheatmap包
library(pheatmap)# 创建示例数据集
set.seed(123)
matrix_data <- matrix(rnorm(100), nrow = 10)  # 生成10x10的随机矩阵数据# 绘制热力图
pheatmap(matrix_data,main = "pheatmap示例",color = colorRampPalette(c("blue", "white", "red"))(50),  # 颜色渐变scale = "row",                                             # 按行标准化cluster_rows = TRUE,                                      # 行聚类cluster_cols = TRUE,                                      # 列聚类show_rownames = TRUE,                                    # 显示行名show_colnames = TRUE                                     # 显示列名
)

效果

在这里插入图片描述

使用 ggplot2 包和 geom_tile() 函数

ggplot2 提供的geom_tile函数适合创建个性化的热力图

示例

# 加载ggplot2包
library(ggplot2)# 创建数据框
set.seed(123)
matrix_data <- matrix(rnorm(100), nrow = 10)
data_long <- as.data.frame(as.table(matrix_data))  # 将矩阵数据转换为长格式数据框# 绘制热力图
ggplot(data_long, aes(x = Var2, y = Var1, fill = Freq)) +geom_tile() +scale_fill_gradient(low = "blue", high = "red") +labs(title = "ggplot2热力图示例",x = "列",y = "行",fill = "值") +theme_minimal()

解析

1. 使用 heatmap()函数:

  • matrix_data 是一个生成的10x10的随机矩阵
  • col = cm.colors(256) 设置热力图的颜色渐变,cm.colors 是颜色函数
  • scale = “none” 表示不对数据进行标准化(即原始数据被直接用于绘图)

2. 使用 pheatmap包:

  • color = colorRampPalette(c(“blue”, “white”, “red”))(50) 设置颜色渐变,从蓝色到红色
  • scale = “row” 表示对数据按行进行标准化
  • cluster_rows 和 cluster_cols 控制是否对行和列进行聚类

3. 使用 ggplot2包:

  • geom_tile() 用于绘制热力图的每个单元格
  • scale_fill_gradient(low = “blue”, high = “red”) 设置颜色渐变的范围
  • as.table(matrix_data) 将矩阵数据转换为适合 ggplot2 的长格式数据框

效果

在这里插入图片描述

雷达图

要画雷达图(也称为蜘蛛图或极坐标图),可使用fmsb包提供的函数来实现,雷达图适合用于展示多个变量的相对大小或比较不同类别在不同维度上的表现

示例

需确保你已经安装了fmsb包:

install.packages("fmsb")
# 创建示例数据集
data <- data.frame(Category = c("A", "B", "C", "D", "E"),  # 类别Var1 = c(20, 15, 25, 30, 35),           # 变量1Var2 = c(25, 20, 30, 35, 40),           # 变量2Var3 = c(30, 35, 40, 45, 50)            # 变量3
)# 加载fmsb包
library(fmsb)# 将数据标准化处理,将数值转换为角度
data_norm <- data.frame(data[,-1] / apply(data[,-1], 1, max)  # 标准化处理,除以各行中的最大值
)# 设置雷达图参数
radarchart(data_norm,    # 使用标准化处理后的数据pcol = c("skyblue"),           # 多边形的填充颜色plwd = 2,                       # 多边形线条的宽度cglcol = "black",               # 各个多边形的颜色cglty = 1,                      # 多边形线条的类型axislabcol = "black",           # 坐标轴标签的颜色title = "雷达图示例",           # 图表标题vlcex = 0.8                     # 标签文本的大小
)

解析

1. 创建数据集:

  • data 包含不同类别在多个维度上的数值,例如变量1、变量2和变量3

2. 使用fmsb包绘制雷达图:

  • data_norm 对原始数据进行标准化处理,确保各个维度的数据在相同的比例下进行比较
  • radarchart() 函数用于绘制雷达图,其中参数设置多边形的填充颜色、线条宽度、坐标轴标签颜色、图表标题等

效果

在这里插入图片描述

韦恩图

绘制韦恩图可以使用 VennDiagram 包,它提供了多种功能来创建和定制韦恩图

示例

确保已经安装了 VennDiagram 包

install.packages("VennDiagram")
# 加载必要的包
library(VennDiagram)# 定义韦恩图的数据
venn_data <- list(A = c(1, 2, 3, 4, 5),B = c(4, 5, 6, 7, 8),C = c(7, 8, 9, 10, 11)
)# 绘制 2D 韦恩图
venn_plot <- venn.diagram(x = venn_data,category.names = c("Group A", "Group B", "Group C"), # 组的名称filename = NULL, # 不保存为文件,直接显示output = TRUE,   # 输出为图形对象main = "2D Venn Diagram", # 主标题col = c("blue", "green", "red"), # 组的边框颜色fill = c("lightblue", "lightgreen", "lightcoral"), # 组的填充颜色alpha = 0.5, # 填充透明度cex = 1.5, # 组名称字体大小cat.cex = 1.2, # 类别名称字体大小cat.col = c("blue", "green", "red"), # 类别名称颜色margin = 0.1 # 图形边缘的空白
)# 显示图形
grid.draw(venn_plot)

解析

1. 定义韦恩图的数据:

  • 使用 venn_data 列表来定义三个集合 A、B 和 C 的元素

2. 绘制 2D 韦恩图:

  • venn.diagram() 函数用于创建韦恩图
  • x 参数传递数据列表 venn_data
  • category.names 设置每个集合的名称
  • filename 设置为 NULL 表示不保存为文件,只在 R 中显示图形
  • output 设置为 TRUE,使得函数返回图形对象
  • main 设置主标题
  • col 和 fill 分别设置边框颜色和填充颜色
  • alpha 设置填充颜色的透明度
  • cex 和 cat.cex 设置组名称和类别名称的字体大小
  • cat.col 设置类别名称的颜色
  • margin 设置图形边缘的空白区域

3. 显示图形:

  • 使用 grid.draw() 函数来显示生成的韦恩图

效果

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/873832.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python学习—open函数,json与pickle知识点,Os模块详解

目录 1. Open函数 2.json与pickle模块 json模块 1. json.dumps() 2. json.dump() 3. json.loads() 4. json.load() pickle 模块 1. pickle.dumps() 2. pickle.dump() 3. pickle.loads() 4. pickle.load() 3.Os模块 1. Open函数 在Python中&#xff0c;open() 函数…

Jenkins+Maven+Gitlab+Tomcat自动化构建打包+部署

目录 环境准备 导入项目包 配置jenkins 构建项目 配置项目上线 修改项目代码测试 环境准备 本实操项目环境基于https://blog.csdn.net/Lzcsfg/article/details/140359830 首先在node01主机中操作&#xff0c;本次操作需要java8的版本&#xff0c;将之前安装的java17卸…

IoTDB 分段查询语句详解:GROUP BY + 时序语义

GROUP BY 查询子句的时序语义展开&#xff0c;IoTDB 支持的分段方式总结&#xff01; 存储的数据通过分析来发挥价值&#xff0c;当一组被存储的数据通过查询得到分析后的结果时&#xff0c;这些数据才真正在数据库中实现了价值闭环。 在关系型数据库中&#xff0c;GROUP BY 子…

陀螺仪LSM6DS3TR-C的简单使用

文章目录 一、前言二、硬件1.引脚说明2.原理图 三、软件1.IIC读写函数1.1 读函数1.2 写函数 2.初始化2.1 检测设备是否存在2.2 读取LSM6DS3TRC器件ID2.3 LSM6DS3TRC重启&#xff0c;重置寄存器2.5 LSM6DS3TRC设置块数据更新2.6 LSM6DS3TRC设置加速度计的数据采样率2.7 LSM6DS3T…

剪画小程序:刷到好听的音频怎么将音频保存到手机里

在这个短视频盛行的时代&#xff0c;相信很多朋友都和我一样&#xff0c;常常会被那些精彩视频中的背景音乐深深吸引。 比如我&#xff0c;特别喜欢听歌&#xff0c;这段时间在短视频平台上刷到了好多好看的视频&#xff0c;里面的背景音乐简直绝绝子&#xff01; 那么&#x…

【数据分享】2013-2022年我国省市县三级的逐年SO2数据(excel\shp格式\免费获取)

空气质量数据是在我们日常研究中经常使用的数据&#xff01;之前我们给大家分享了2000——2022年的省市县三级的逐年PM2.5数据和2013-2022年的省市县三级的逐年CO数据&#xff08;均可查看之前的文章获悉详情&#xff09;&#xff01; 本次我们分享的是我国2013——2022年的省…

《样式设计011:模组-瓷片区》

描述&#xff1a;在开发小程序过程中&#xff0c;发现一些不错的案例&#xff0c;平时使用也比较多&#xff0c;稍微总结了下经验&#xff0c;以下内容可以直接复制使用&#xff0c;希望对大家有所帮助&#xff0c;废话不多说直接上干货&#xff01; 一、小程序&#xff1a;模组…

TeraTerm 使用技巧

参考资料 自分がよく使うTeratermマクロによる自動ログインのやり方をまとめてみたよTera Term マクロでログインを自動化してみたTera Term のススメ 目录 简介一. 常用基础设置1.1 语言变更1.2 log设置 二. 小技巧2.1 指定host别名2.2 新开窗口2.3 设置粘贴多行命令时的行间…

数学建模学习(111):改进遗传算法(引入模拟退火、轮盘赌和网格搜索)求解JSP问题

文章目录 一、车间调度问题1.1目前处理方法1.2简单案例 二、基于改进遗传算法求解车间调度2.1车间调度背景介绍2.2遗传算法介绍2.2.1基本流程2.2.2遗传算法的基本操作和公式2.2.3遗传算法的优势2.2.4遗传算法的不足 2.3讲解本文思路及代码2.4算法执行结果&#xff1a; 三、本文…

怎么使用动态IP地址上网

如何设置动态IP地址上网&#xff1f; 设置动态IP地址上网的步骤如下&#xff1a; 一、了解动态IP地址 动态IP地址是由网络服务提供商&#xff08;ISP&#xff09;动态分配给用户的IP地址&#xff0c;它会根据用户的需求和网络情况实时改变。相比于静态IP地址&#xff0c;动态…

基于术语词典干预的机器翻译挑战赛笔记 Task3 #Datawhale AI 夏令营

书接上回&#xff0c;上回在这捏&#xff1a; 基于术语词典干预的机器翻译挑战赛笔记Task2 #Datawhale AI 夏令营-CSDN博客文章浏览阅读223次&#xff0c;点赞10次&#xff0c;收藏5次。基于术语词典干预的机器翻译挑战赛笔记Task2https://blog.csdn.net/qq_23311271/article/…

状压dp,D - Grid Puzzle

一、题目 1、题目描述 2、输入输出 2.1输入 2.2输出 3、原题链接 D - Grid Puzzle 二、解题报告 1、思路分析 贪心做法看不懂&#xff08;为什么我赛时要跟贪心过不去啊&#xff09; 这个题麻烦在这个case&#xff1a;2 4 4 2&#xff0c;我们可以清除三次2x2得到 但是我…

前端post提交一次会有两次请求?

1 问题&#xff1a;前端post只提交一次会有两次请求&#xff1f; 前端post只提交一次会有两次请求&#xff1f;如下图&#xff1a; 这里是执行了两次post提交&#xff0c;每个post都有两次&#xff08;一次是preflight以options方式&#xff0c;一次是xhr&#xff0c;原本…

Yolo-World网络模型结构及原理分析(三)——RepVL-PAN

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言1. 网络结构2. 特征融合3. 文本引导&#xff08;Text-guided&#xff09;4. 图像池化注意力&#xff08;Image-Pooling Attention&#xff09;5. 区域文本匹配&…

springboot+vue+mybatis校园热点新闻系统+PPT+论文+讲解+售后

21世纪的今天&#xff0c;随着社会的不断发展与进步&#xff0c;人们对于信息科学化的认识&#xff0c;已由低层次向高层次发展&#xff0c;由原来的感性认识向理性认识提高&#xff0c;管理工作的重要性已逐渐被人们所认识&#xff0c;科学化的管理&#xff0c;使信息存储达到…

如何在 Windows 上恢复丢失或删除的文件

意外删除重要文件或文档的历史与 Windows 本身一样悠久&#xff0c;这就是为什么有许多内置方法来恢复它。从深入回收站到挖掘 Microsoft 的 Windows 文件恢复实用程序&#xff0c;以下是如何在 Windows 中恢复丢失和删除的文件。 检查回收站 Windows 帮助您恢复已删除并需要再…

IO多路复用之poll、epoll和select区分

epoll和select 假设你在大学读书&#xff0c;住的宿舍楼有很多间房间&#xff0c;你的朋友要来找你。 select版宿管大妈就会带着你的朋友挨个房间去找&#xff0c;直到找到你为止。 而epoll版宿管大妈会先记下每位同学的房间号&#xff0c; 你的朋友来时&#xff0c;只需告诉你…

德国汉堡大学、清华大学联合英国布里斯托机器人实验室的研究工作分享:基于视觉遥操作的多指机械手灵巧操作

德国汉堡大学&#xff08;张建伟院士团队&#xff09;、清华大学&#xff08;孙富春教授和方斌&#xff09;联合英国布里斯托机器人实验室等单位在基于视觉信息遥操作的多指机械手灵巧操作研究方面取得进展。该工作得到了德国科学基金会&#xff08;DFG&#xff09;与中国国家自…

Git分支管理基本原理

原文全文详见个人博客&#xff1a; Git分支管理基本原理上文已讨论过svn分支管理的基本原理&#xff0c;本文将继续探讨Git分支管理的基本原理&#xff0c;以便后续进行进一步的理解和对比&#xff1a;https://www.coderli.com/git-branch-method/【Java学习交流(982860385)】…

Linux journalctl日志太长,如何倒序查看journalctl --reverse,journalctl -xeu

文章目录 需求实验方法一方法二 需求 Linux journalctl日志太长&#xff0c;如何倒序查看 我们通常关心的是最近的日志&#xff0c;但是每次打开日志都是按时间先后顺序显示的&#xff0c;如何倒序查看&#xff0c;请看下面&#xff1a; 实验 方法一 journalctl 命令默认按…