计算机网络入门 -- 常用网络协议

计算机网络入门 – 常用网络协议

1.分类

1.1 模型回顾

计算机网络细分可以划为七层模型,分别是物理层、数据链路层、网络层、传输层、会话层、表示层和应用层。而上三层可以划为应用层中。

1.2 分类

1.2.1 应用层

为用户的应用进程提供网络通信服务,包括DNS协议、HTTP协议和HTTPS协议。

1.2.2 传输层

负责两台主机之间的数据传输,将数据从发送端传输到接收端,其中包括TCP和UDP协议。

1.2.3 网络层

负责传输的地址管理和路由选择,在众多复杂网络环境中确定一条合适的路径,包括IP协议。

1.2.4 数据链路层

负责设备之间数据帧的传输和识别,将网络层传递的数据报封装成帧,在处于同一个数据链路节点的两个设备之间传输,包括ARP协议和MTU协议。

1.2.5 物理层

负责光电信号传输,实现相邻计算机节点之间比特流透明传输。

1.3 意义

无论是将网络模型分为五层还是七层,都是为了简化网络设计的复杂性,通信协议采用分层结构,各层之间相互独立但又协同工作。在设计一个复杂庞大的框架时,尽可能使之间的功能解耦是一种很明智的做法。


2.应用层协议

2.1 概念

应用层网络负责各个程序之间通信。发生网络传输一个数据时,先由应用层对数据按照对应的协议封装,并交给下一层传输层,经过层层网络传输后数据到达接收端,又从下往上分用。

2.2 协议

2.2.1 DNS协议

DNS建立在TCP和UDP通信协议上,默认端口为53。正常传输通过UDP进行通信,当报文较长时切换至TCP协议。其功能是将便于人类理解的网络域名(如:www.baidu.com)转换为IP地址,而这种映射关系则保存于DNS服务器中。总体来说,域名解析可以分为两个步骤:第一步客户端向本地DNS服务器发起一个DNS请求报文,报文里携带需要查询的域名,第二步本地DNS服务器向本机回应一个DNS响应报文,报文里携带查询域名所对应的IP地址。

  • 1.在本地缓存中查询,如果有则返回IP,反之请求本地DNS。
  • 2.本地DNS收到请求后,先在服务器管理区域记录中查询,若无数据则在服务器本地缓存中查询,若还没有则将请求送达根域名服务器。
  • 3.根域名服务器解析请求的根域部分,然后将包含下一级域名信息的DNS服务器地址返回至本地DNS服务器。
  • 4.本地DNS服务器利用根域名服务器解析的地址访问下一级DNS服务器,得到再下一级的DNS服务器地址。
  • 5.按照上述递归方法逐级接近查询目标,最后在有目标的DNS服务器上找到相应的IP信息。
  • 6.本地DNS服务器将最终擦寻的IP返回至客户端,让客户端访问对应主机。

2.2.2 HTTP协议

HTTP本身是一个简单的请求,即响应协议,运行在TCP协议之上。该协议指定了客户端可能发送给服务器什么样的消息以及会得到什么样的响应。同其他应用层协议一样,是为了实现某一类具体应用的协议,并由某一运行在用户空间的应用程序来实现其功能。HTTP是一种协议规范,这种规范记录在文档上,为真正通过HTTP进行通信的HTTP的实现程序。

2.2.2.1 HTTP事务处理
  • 1.客户端域服务器建立连接
  • 2.客户端向服务端发送请求
  • 3.服务器响应请求,并根据请求返回相应的数据
  • 4.客户端与服务端关闭连接
2.2.2.2 HTTP报文格式

请求本身由请求行、请求头和请求体狗工程

  • 请求行:包括请求方法、路径、版本号等
  • 请求头:为多个键值对数据
  • 请求体:包含请求数据
  • 响应行:包含状态码、版本号
2.2.2.3 响应码

200:客户端请求成功;3xx;4xx;5xx

2.2.2.4 特点
  • 1.支持C/S模式
  • 2.传输速度快,客户端向服务器发送请求,只需要传输请求方法和路径
  • 3.请求灵活,HTTP允许传输任意类型的数据对象
  • 4.无连接,每次连接只能处理一个请求,服务器处理完客户端请求,客户端收到响应后就断开连接
  • 5.无状态,协议本身对事务处理没有记忆能力,如果后序连接需要之前发送的信息时就需要重传

2.2.3 HTTPS协议

HTTPS同样作为应用层协议,可以说它是HTTP的升级版,增加了传输数据的安全性,HTTPS协议是在HTTP的基础上增加了一个SSL外壳,HTTPS运行在SSL上,SSL运行在TCP上,对数据的加密工作就是在SSL上完成的


3.传输层协议

3.1 概念

传输层的主要功能是为了实现“端口到端口”的通信,以确保一条数据发送到主机上后,能够正确的传递到对应的端口上。

3.2 协议

3.2.1 UDP协议

UDP是一种面向无连接的传输协议,无需连接就可以发送封装IP的数据包。但面向无连接的缺点就是不稳定,一旦在通信链路上出现网络波动或连接问题则会发生数据丢包。

3.2.1.1 UDP报文

alt text

3.2.1.2 特点
  • 无连接:只需要指导目标机的IP和端口就可以发送数据,其间无连接。
  • 不可靠:没有一系列机制保证数据传输的丢包问题。
  • 面向数据报发送:应用层交给UDP什么样的数据,UDP就发送什么样的数据,不会拆分、合并。
  • 传输限制:UDP一次传输上限为64K。
3.2.1.3 传输流程

alt text

3.2.1.4 适用范围

由于UDP不属于连接型协议,所以具有资源消耗小。处理速度优的特点,因此经常使用与视频、音频通话传输中,因为发送的数据较多,偶尔丢包一两个不会产生太大影响

3.2.2 TCP协议

因为上述讲到UDP的传输是不可靠的,经常会导致连接错误、数据丢包问题,针对这些问题规定了另一个传输层协议——TCP协议,TCP是一种面向连接、可靠的、基于字节流的传输层协议

3.2.2.1 TCP报文

alt text

3.2.2.2 特点
  • 面向连接:在传输数据时,客户端与服务端要建立一个可靠的连接
  • 可靠通信:TCP传输数据时,会基于内部的各种机制保证数据传输到目的端口
  • 基于字节流:TCP传输数据基于字节流,方便对数据的拆分和合并发送
  • 开销较大:TCP头部比UDP开销大,因为需要存放更多信息
3.2.2.3 TCP连接

TCP在连接时会进行三次握手

  • 首先客户端和服务端均关闭
  • 第一次握手:客户端打开并向服务端发送连接请求,这是报文首部中的同部位SYN=1,同时选择一个初始序列号 seq=x ,此时,TCP客户端进程进入了 SYN-SENT 同步已发送状态。该步骤是确定客户端能够正常发送数据
  • 第二次握手:服务端向客户端发送一个确认收到的响应,确认报文中应该 ACK=1,SYN=1,确认号是ack=x+1,同时也要为自己初始化一个序列号 seq=y,此时,TCP服务器进程进入了 SYN-RCVD 同步收到状态。该步骤是确认服务端收发数据正常。
  • 第三次握手:当客户端再次接收到服务端发送的数据后,将会再次向服务端发送确认连接信息,确认报文的ACK=1,ack=y+1,自己的序列号seq=x+1,此时,TCP连接建立,客户端进入ESTABLISHED已建立连接状态 触发三次握手。该步骤是确定客户端接收数据正常。

由于TCP是建立在可靠连接上的,因此三次握手的目的是为了检验客户端与服务端数据的收发功能是否正常。

alt text

3.2.2.4 TCP断连

TCP在终止连接时会进行四次挥手

  • 第一次挥手:客户端发出释放连接报文,并停止发送数据,释放数据报文首部。FIN=1,其序列号为seq=u(等于前面已经传送过来的数据的最后一个字节的序号加1),此时,客户端进入FIN-WAIT-1(终止等待1)状态
  • 第二次挥手:服务器端接收到连接释放报文后,发出确认报文,ACK=1,ack=u+1,并且带上自己的序列号seq=v,此时,服务端就进入了CLOSE-WAIT 关闭等待状态
  • 第三次挥手:客户端接收到服务器端的确认请求后,客户端就会进入FIN-WAIT-2(终止等待2)状态,等待服务器发送连接释放报文,服务器将最后的数据发送完毕后,就向客户端发送连接释放报文,服务器就进入了LAST-ACK(最后确认)状态,等待客户端的确认。
  • 第四次挥手:客户端收到服务器的连接释放报文后,必须发出确认,ACK=1,ack=w+1,而自己的序列号是seq=u+1,此时,客户端就进入了TIME-WAIT(时间等待)状态,但此时TCP连接还未终止,必须要经过2MSL后(最长报文寿命),当客户端撤销相应的TCB后,客户端才会进入CLOSED关闭状态,服务器端接收到确认报文后,会立即进入CLOSED关闭状态,到这里TCP连接就断开了,四次挥手完成

alt text


4.网络层

4.1 概念

网络层是基于数据链路层和传输层之间的第三层协议,它在数据链路层提供的两个相邻端点之间的数据帧的传送功能上,进一步管理网络中的数据通信,将数据设法从源端经过若干个中间节点传送到目的端,从而向传输层提供最基本的端到端的数据传送服务

4.2 协议

4.2.1 IP协议

IP协议是TCP/IP网络模型中的核心部分,他提供了一种分层的、无关硬件的寻址方式,可以在复杂的路由式网络中传递数据所需的服务。IP协议可以将多个交换网络连接起来,在源地址和目的地址之间传输数据包,同时它还能提供数据的组装功能,以适应不同网络对数据包大小的要求。

4.2.1.1 IP地址

IP地址是互联网协议特有的一种地址,它是IP协议提供的一种统一的地址格式,IP地址为互联网的每个网络和每台主机分配了一个逻辑地址,以此来屏蔽物理地址的差异。

4.2.1.2 IP地址格式

P地址为32位地址,被分为4个部分,如XXX.XXX.XXX.XXX,IP地址又被划分为两个部分

  • 网络号:前三部分用于标识网段,保证相互连接的两个网段有不同标识
  • 主机号:最后一部分用于标识主机,保证处于同一网段的不同设备都有不同标识
    通过合理设置主机号和网络号, 就可以保证在相互连接的网络中, 每台主机的IP地址都不相同
4.2.1.3 MAC地址

被称为物理地址,是用来标识网络中每个设备的,MAC地址是设备出厂之后就写死的

4.2.1.4 IP协议数据报格式

alt text

4.2.1.5 IP协议工作方式
  • 同网段:若源地址与主机地址位于同一网段,则目的IP地址被ARP协议解析为MAC地址后,源主机会根据目的MAC地址直接将数据包发送给目标主机。
  • 不同网段:不同网段会经过多个过程发送给主机
    • 网关的IP地址被ARP协议解析为MAC地址,根据MAC地址,源主机会将数据发送至网关。
    • 网关根据数据数据包中网段ID找到目标网络,将数据包发送至目标网络,如果没有则重复第一步发送到更高一级网关。
    • 数据包经网关发送到正确网段,目标IP被ARP协议 解析为MAC地址,在根据该MAC地址将数据包发送给目标地址的主机。

5.数据链路层

5.1 概念

数据链路层是TCP/IP网络模型的第二层,基于物理层和网络层之间,数据链路层在物理层提供的服务的基础上向网络层提供服务,其最基本的服务是将源自物理层来的数据可靠地传输到相邻节点的目标机网络层。

5.2 协议

5.2.1 ARP协议

ARP协议是数据进行网络传输过程中,通过IP地址向MAC地址的转换,解决网络层和物理层衔接问题。由于 IP 地址和 MAC 地址定位方式不同,ARP 协议成为数据传输的必备协议。主机发送信息前,必须通过 ARP 协议获取目标 IP 地址对应的 MAC 地址,才能正确地发送数据包。

5.2.1.1 ARP报文

alt text

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/873575.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深入浅出WebRTC—DelayBasedBwe

WebRTC 中的带宽估计是其拥塞控制机制的核心组成部分,基于延迟的带宽估计是其中的一种策略,它主要基于延迟变化推断出可用的网络带宽。 1. 总体架构 1.1. 静态结构 1)DelayBasedBwe 受 GoogCcNetworkController 控制,接收其输入…

buu--web做题(4)

目录 [BJDCTF2020]ZJCTF&#xff0c;不过如此 [BUUCTF 2018]Online Tool [BJDCTF2020]ZJCTF&#xff0c;不过如此 <?phperror_reporting(0); $text $_GET["text"]; $file $_GET["file"]; if(isset($text)&&(file_get_contents($text,r)&q…

【iOS】——消息传递底层实现

消息传递是什么 Objective-C是一种动态类型语言&#xff0c;这意味着在编译时并不确定对象的具体类型&#xff0c;而是在运行时决定。消息传递机制允许程序在运行时向对象发送消息&#xff0c;对象再决定如何响应这些消息。 当你通过对象调用方法时&#xff0c;例如像这样[ob…

PhantomJs将html生成img|pdf

PhantomJS PhantomJS是一个可编程的无头浏览器&#xff0c;‌它基于WebKit内核&#xff0c;‌通过JavaScript API进行脚本化操作&#xff0c;它对各种web标准有快速和原生化的支持&#xff0c;包括DOM处理、CSS选择器、JSON、Canvas和SVG。‌无头浏览器指的是一个完整的浏览器内…

Linux——多路复用之poll

目录 前言 一、poll的认识 二、poll的接口 三、poll的使用 前言 前面我们学习了多路复用的select&#xff0c;知道多路复用的原理与select的使用方法&#xff0c;但是select也有许多缺点&#xff0c;导致他的效率不算高。今天我们来学习poll的使用&#xff0c;看看poll较于…

Linux先行一步

&#x1f4d1;打牌 &#xff1a; da pai ge的个人主页 &#x1f324;️个人专栏 &#xff1a; da pai ge的博客专栏 ☁️宝剑锋从磨砺出&#xff0c;梅花香自苦寒来 ☁️运维工程师的职责&#xff1a;监…

初识模板【C++】

P. S.&#xff1a;以下代码均在VS2022环境下测试&#xff0c;不代表所有编译器均可通过。 P. S.&#xff1a;测试代码均未展示头文件stdio.h的声明&#xff0c;使用时请自行添加。 博主主页&#xff1a;LiUEEEEE                        …

AV1技术学习:Intra Prediction

对于帧内预测模式编码块&#xff0c;亮度分量的预测模式和色度分量的预测模式在比特流中分别发出信号。亮度预测模式是基于相邻左侧和上侧两个编码块预测上下文的概率模型进行熵编码的。色度预测模式的熵编码取决于色度预测模式的状态。帧内预测以变换块为单位&#xff0c;并使…

Linux下文件I/O操作

读取 time.txt 文件&#xff0c;写入到time_2.txt 一、函数 1.1、open() 函数 #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> int open(const char *pathname, int flags); int open(const char *pathname, int flags, mode_t mode);…

RDMA 高性能架构基本原理与设计方案

在进行本文的学习学习之前&#xff0c;我们先对RDMA是什么做一个简单的科普与认识&#xff1a;一文带你了解什么是RDMA-CSDN博客 目录&#xff1a; 目录&#xff1a; 一、RDMA和传统网络方案的比较 1.1 传统网络方案&#xff1a; 1.1.1 缺点一&#xff1a;以太网卡&#xff0…

debian 更新源

前言 实现一键替换在线源 一键更新源 Debian 全球镜像站以下支持现有debian 11 12 echo "Delete the default source" rm -rf /etc/apt/sources.listecho "Build a new source" cat <<EOF>>/etc/apt/sources.list.d/debian.sources Types:…

Tensorflow入门实战 T09进行猫狗识别2

目录 1、前言 2、代码 3、运行结果 4、反思 本文为&#x1f517;365天深度学习训练营 中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊 | 接辅导、项目定制 1、前言 本周学习内容为&#xff0c;采用自己设置的vgg-16网络进行猫狗识别&#xff0c;使用的模型是YO…

自动驾驶三维车道线检测系列—LATR: 3D Lane Detection from Monocular Images with Transformer

文章目录 1. 概述2. 背景介绍3. 方法3.1 整体结构3.2 车道感知查询生成器3.3 动态3D地面位置嵌入3.4 预测头和损失 4. 实验评测4.1 数据集和评估指标4.2 实验设置4.3 主要结果 5. 讨论和总结 1. 概述 3D 车道线检测是自动驾驶中的一个基础但具有挑战性的任务。最近的进展主要依…

vscode搭建PyQt + Quick开发环境

VScode搭建PyQt Quick开发环境 目录 环境准备 &#x1f514;安装必要的Python包 &#x1f514;&#x1f50e; PyQt5和PySide2的区别&#x1f4be; 安装PyQt5&#x1f4be; 安装PySide2 配置VScode &#x1f514;&#x1f4bb; 安装扩展 代码示例 &#x1f514;✔ Python调用Qt…

【Django】django自带后台管理系统样式错乱,uwsgi启动css格式消失的问题

正常情况&#xff1a; ERROR&#xff1a;&#xff08;css、js文件加载失败&#xff09; 问题&#xff1a;CSS加载的样式没有了&#xff0c;原因&#xff1a;使用了django自带的admin&#xff0c;在使用 python manage.py runserver启动 的时候&#xff0c;可以加载到admin的文…

如何学习Spark:糙快猛的大数据之旅

作为一名大数据开发者,我深知学习Spark的重要性。今天,我想和大家分享一下我的Spark学习心得,希望能够帮助到正在学习或准备学习Spark的朋友们。 目录 Spark是什么?学习Spark的"糙快猛"之道1. 不要追求完美,在实践中学习2. 利用大模型作为24小时助教3. 根据自己的节…

无人机的发展前景大吗?

随着科技的飞速发展&#xff0c;无人机&#xff08;Unmanned Aerial Vehicle, UAV&#xff09;作为一种新兴的航空器&#xff0c;已逐渐从军事领域渗透到民用领域。无人机的应用广泛&#xff0c;包括但不限于航拍、物流配送、环境监测、农业植保、应急救援等多个领域。本文旨在…

Chromium CI/CD 之Jenkins实用指南2024-在Windows节点上创建任务(九)

1. 引言 在现代软件开发流程中&#xff0c;持续集成&#xff08;CI&#xff09;和持续交付&#xff08;CD&#xff09;已成为确保代码质量和加速发布周期的关键实践。Jenkins作为一款广泛应用的开源自动化服务器&#xff0c;通过其强大的插件生态系统和灵活的配置选项&#xf…

十七、【机器学习】【非监督学习】- K-均值 (K-Means)

系列文章目录 第一章 【机器学习】初识机器学习 第二章 【机器学习】【监督学习】- 逻辑回归算法 (Logistic Regression) 第三章 【机器学习】【监督学习】- 支持向量机 (SVM) 第四章【机器学习】【监督学习】- K-近邻算法 (K-NN) 第五章【机器学习】【监督学习】- 决策树…

静态代理与动态代理的区别与选择

在当今软件开发领域&#xff0c;代理模式作为一种重要的设计模式&#xff0c;广泛应用于增强现有对象功能、控制访问权限以及实现远程调用等场景。本文旨在深入探讨静态代理与动态代理之间的核心区别&#xff0c;帮助开发者理解两者在实现机制、灵活性、性能表现及适用场景上的…