【iOS】——消息传递底层实现

消息传递是什么

Objective-C是一种动态类型语言,这意味着在编译时并不确定对象的具体类型,而是在运行时决定。消息传递机制允许程序在运行时向对象发送消息,对象再决定如何响应这些消息。

当你通过对象调用方法时,例如像这样[obj someMethod]编译器会将其转换为一个消息发送的底层调用,通常是 objc_msgSend(obj, @selector(someMethod))。这个函数接受两个主要参数:方法的调用者方法选择器(也就是方法名)。

void objc_msgSend(id self, SEL cmd, ....)

第一 个参数代表接收者也就是方法调用者,第二个参数代表方法选择器(SEL 是选择子的类型)也就是方法的名字,后续参数就是消息中的 那些参数,其顺序不变。

选择子SEL

选择子(Selector)是用于表示方法名的数据类型。它是一个在运行时由编译器生成的唯一的标识符,用于在对象中查找并调用相应的方法

OC在编译时会根据方法的名字(包括参数序列),生成一个用来区分这个方法的唯一的一个ID,这个ID就是SEL类型的。我们需要注意的是,只要方法的名字(包括参数序列)相同,那么他们的ID就是相同的。所以不管是父类还是子类,名字相同那么ID就是一样的

IMP

IMP是一个函数指针,它指向方法的实际实现。当运行时系统找到了与选择器相匹配的方法时,它会获取该方法的IMP,然后调用这个函数指针来执行方法的代码。

IMP通常被声明为id返回类型和接受id类型的selfSEL类型的_cmd参数的函数指针。例如:

typedef id (*IMP)(id, SEL, ...);

SEL与IMP的关系

在运行时系统中,SELIMP是紧密相关的。当你调用一个方法时,运行时系统首先将方法名解析为SEL,然后使用这个SEL去查找与之对应的IMP。一旦找到IMP,运行时系统就会调用这个函数指针来执行方法的代码。

消息传递的流程

  • 首先,Runtime系统会通过obj的 isa 指针找到其所属的class

  • 接着在这个类的缓存中查找与选择器匹配的方法实现

  • 如果缓存中没找到接着在这个类的方法列表(method list)中查找与选择器(someMethod)匹配的方法实现(IMP)。

  • 如果在当前类中没有找到,Runtime会沿着类的继承链往它的 superclass 中查找,也是先查缓存再查方法列表,直到到达根类(通常为 NSObject)。

  • 一旦找到someMethod这个函数,就去执行它的实现IMP 。

  • 如果直到根类还是没找到就会进行消息转发流程。

消息发送(Messaging)是 Runtime 通过 selector 快速查找 IMP 的过程,有了函数指针就可以执行对应的方法实现;消息转发(Message Forwarding)是在查找 IMP 失败后执行一系列转发流程的慢速通道,如果不作转发处理,则会打日志和抛出异常。

objc_msgSend()的伪代码如下:

id objc_msgSend(id self, SEL _cmd, ...) {//获取当前对象的类对象用于在运行时获取方法实现Class class = object_getClass(self);//根据类对象和选择器_cmd获取IMP指针IMP imp = class_getMethodImplementation(class, _cmd);//判空IMP并返回该方法实现return imp ? imp(self, _cmd, ...) : 0;
}

上面代码之所以是伪代码是因为objc_msgSend 是用汇编语言写的,针对不同架构有不同的实现。汇编语言的效率比c/c++更快,它直接对寄存器进行访问和操作,相比较内存的操作更加底层效率更高。

其源代码比较多,下面是核心部分:

ENTRY _objc_msgSend       // 开始_objc_msgSend函数的定义
MESSENGER_START           // 标记消息传递的开始NilTest NORMAL            // 检查self是否为nil,如果是nil则引发异常GetIsaFast NORMAL         // 快速获取self对象的isa指针,isa指向对象的类信息// r11 = self->isaCacheLookup NORMAL        // 在缓存中查找IMP,如果找到则直接调用IMP// 这里利用了方法缓存,以提高性能NilTestSupport NORMAL     // 如果self是nil的备用处理GetIsaSupport             // 如果需要,更全面地获取isa信息// 这是为了支持特殊情况下的isa获取// cache miss: go search the method lists
LCacheMiss:               // 缓存中没找到,开始在方法列表中查找IMP// isa仍然在r11寄存器中MethodTableLookup %a1, %a2 // 在方法表中查找与选择器匹配的IMP// r11 = IMP,这里查找方法实现cmp %r11, %r11            // 设置eq标志位,用于非 stret (simple) 的方法转发// 这里比较r11与自身,实际上是设置条件码,用于判断是否需要转发jmp *%r11                 // 跳转到IMP地址并执行// 这里直接调用了方法实现END_ENTRY _objc_msgSend   // 结束_objc_msgSend函数的定义

MethodTableLookup 宏是重点,负责在缓存没命中时在方法表中负责查找 IMP:

.macro MethodTableLookupMESSENGER_END_SLOWSaveRegisters// _class_lookupMethodAndLoadCache3(receiver, selector, class)movq	$0, %a1movq	$1, %a2movq	%r11, %a3call	__class_lookupMethodAndLoadCache3// IMP is now in %raxmovq	%rax, %r11RestoreRegisters.endmacro

从上面的代码可以看出方法查找 IMP 的工作交给了 OC 中的 _class_lookupMethodAndLoadCache3 函数,并将 IMP 返回(从 r11 挪到 rax)。最后在 objc_msgSend 中调用 IMP。

消息传递快速查找

  • 首先检查消息接收者receiver是否存在,不存在则不做任何处理。

  • 接着通过receiver的isa指针找到对应的class类对象,

  • cache中获取buckets,从buckets中对比参数sel,看在缓存里有没有同名方法如果buckets中有对应的SEL则返回它对应的IMP

  • 如果在缓存中没有找到匹配的方法选择子,则执行慢速查找过程,即调用 _objc_msgSend_uncached 函数,并进一步调用 _lookUpImpOrForward 函数进行全局的方法查找。

简单来说快速查找就是在所属类的缓存中查找SEL对应的IMP指针

buckets是cache中的结构体,bucket_t的结构体中存储了一个unsigned long和一个IMP。IMP是一个函数指针,指向了一个方法的具体实现。
cache_t中的bucket_t *_buckets其实就是一个散列表,用来存储Method的链表。

在这里插入图片描述

消息传递慢速查找

当消息发送的快速查找过程无法找到匹配的方法实现时,就会进入 _lookUpImpOrForward 函数根据继承链和协议信息逐级查找方法。

  • 从本类的 method list **(二分查找/遍历查找)**查找imp
  • 从本类的父类的cache查找imp**(汇编)**
  • 从本类的父类的method list **(二分查找/遍历查找)**查找imp …继承链遍历…(父类->…->根父类)里找cache和method list的imp
  • 若上面环节有任何一个环节查找到了imp,跳出循环,缓存方法到本类的cache,并返回imp
  • 直到查找到nil,指定imp为消息转发,跳出循环,执行动态决议resolveMethod_locked(消息转发的内容)

简单来说慢速查找就是在所属类的方法列表中查找SEL对应的IMP指针,没找到就沿着继承链一直查找方法缓存和方法列表,找到就返回IMP,没找到就执行动态决议

lookUpImpOrForward函数

前面提到的 _class_lookupMethodAndLoadCache3 函数其实就是简单的调用了 lookUpImpOrForward 函数:

IMP _class_lookupMethodAndLoadCache3(id obj, SEL sel, Class cls)
{return lookUpImpOrForward(cls, sel, obj, YES/*initialize*/, NO/*cache*/, YES/*resolver*/);
}

注意 lookUpImpOrForward 调用时使用缓存参数传入为 NO,因为之前快速查找的时候已经尝试过查找缓存了

IMP lookUpImpOrForward(Class cls, SEL sel, id inst, bool initialize, bool cache, bool resolver) 实现了一套查找 IMP 的标准路径,也就是在消息转发(Forward)之前的逻辑。

下面是lookUpImpOrForward函数源码:

NEVER_INLINE
IMP lookUpImpOrForward(id inst, SEL sel, Class cls, int behavior) {const IMP forward_imp = (IMP)_objc_msgForward_impcache; // 定义转发的IMPIMP imp = nil; // 初始化IMP为nilClass curClass;runtimeLock.assertUnlocked(); // 确认运行时锁未被持有// 如果类未初始化,设置LOOKUP_NOCACHE,防止缓存单个条目的情况if (slowpath(!cls->isInitialized())) {behavior |= LOOKUP_NOCACHE;}runtimeLock.lock(); // 锁住运行时锁// 验证类是否是已知的类checkIsKnownClass(cls);// 确保类已实现和初始化cls = realizeAndInitializeIfNeeded_locked(inst, cls, behavior & LOOKUP_INITIALIZE);curClass = cls; // 当前类for (unsigned attempts = unreasonableClassCount(); ;) {// 如果类的缓存是常量优化缓存// 再一次从cache查找imp// 目的:防止多线程操作时,刚好调用函数,此时缓存进来了if (curClass->cache.isConstantOptimizedCache(true)) {
#if CONFIG_USE_PREOPT_CACHESimp = cache_getImp(curClass, sel); // 从缓存中查找IMPif (imp) goto done_unlock; // 如果找到IMP,结束循环curClass = curClass->cache.preoptFallbackClass();
#endif} else {// 从当前类的方法列表中查找匹配的选择器method_t *meth = getMethodNoSuper_nolock(curClass, sel);if (meth) {imp = meth->imp(false); // 获取IMPgoto done;}// 每次判断都会把curClass的父类赋值给curClassif (slowpath((curClass = curClass->getSuperclass()) == nil)) {imp = forward_imp; // 使用转发IMPbreak;}}// 防止超类链中出现循环if (slowpath(--attempts == 0)) {_objc_fatal("Memory corruption in class list.");}// 在超类缓存中查找IMPimp = cache_getImp(curClass, sel);if (slowpath(imp == forward_imp)) {// 在超类中发现转发条目,停止搜索break;}if (fastpath(imp)) {// 在超类中找到方法,缓存结果goto done;}}// 尝试方法解析器if (slowpath(behavior & LOOKUP_RESOLVER)) {behavior ^= LOOKUP_RESOLVER;return resolveMethod_locked(inst, sel, cls, behavior);}done:if (fastpath((behavior & LOOKUP_NOCACHE) == )) {
#if CONFIG_USE_PREOPT_CACHESwhile (cls->cache.isConstantOptimizedCache(true)) {cls = cls->cache.preoptFallbackClass();}
#endiflog_and_fill_cache(cls, imp, sel, inst, curClass); // 填充缓存}done_unlock:runtimeLock.unlock(); // 解锁// 如果设置LOOKUP_NIL并且IMP是转发IMP,则返回nilif (slowpath((behavior & LOOKUP_NIL) && imp == forward_imp)) {return nil;}return imp; // 返回找到的IMP
}

总体的流程如下:

首先检查接收者 inst 是否为空,如果为空则直接返回空。

接下来,代码根据接收者的类对象 cls 进行一系列的处理和查找操作,以找到适当的方法实现 imp。包括:

  • 检查类对象是否已经初始化,如果尚未初始化则将 LOOKUP_NOCACHE 标志添加到 behavior 中,避免缓存查找。

  • 通过 realizeAndInitializeIfNeeded_locked 函数对类对象进行实例化和初始化处理,确保类对象已经准备就绪。

  • 使用循环逐级查找方法实现,包括在类的缓存中查找、在类的方法列表中查找、在父类链中查找。如果找到了匹配的方法实现,则跳转到 done 标签处。

  • 如果在查找过程中找不到匹配的方法实现,则说明需要进行消息转发。将消息转发的默认实现 forward_imp 赋给 imp。

  • 如果设置了 LOOKUP_RESOLVER 标志,说明需要调用方法解析器进行进一步处理,跳转到 resolveMethod_locked 函数进行解析。

  • 在查找或转发结束后,如果未设置 LOOKUP_NOCACHE 标志,将找到的方法实现 imp 缓存到类对象的缓存中。

  • 代码解锁runtime锁,根据需要返回找到的方法实现 imp 或空值

在循环中,首先检查当前类对象的缓存是否是常量优化缓存(isConstantOptimizedCache)。如果是常量优化缓存,代码尝试从缓存中获取方法实现(cache_getImp(curClass, sel))。如果成功获取到方法实现,则跳转到 done_unlock 标签处,结束查找。

如果当前类对象的缓存不是常量优化缓存,代码继续执行。通过调用 getMethodNoSuper_nolock 函数在当前类对象的方法列表中查找方法(meth = getMethodNoSuper_nolock(curClass, sel))。如果找到匹配的方法,则获取对应的方法实现(imp = meth->imp(false)),跳转到 done 标签处,结束查找。

如果在当前类对象的方法列表中没有找到匹配的方法实现,代码继续执行。将当前类对象的父类赋值给 curClass,并判断是否为 nil。如果父类为 nil,说明已经到达了继承链的顶端,没有找到匹配的方法实现。此时将默认的转发实现 forward_imp 赋给 imp,并跳出循环。

在循环的每次迭代中,会将 attempts 的值减一,表示尚未完成的查找次数。如果 attempts 的值减到零,则说明类对象的继承链中存在循环,这是不合理的。此时会触发一个错误,终止程序执行。

如果在当前类对象的缓存中找到了转发的条目(imp == forward_imp),表示在父类的缓存中找到了转发的方法实现。这时会停止循环,但不会将转发的方法实现缓存,而是先调用方法解析器来处理。

最后,在循环结束后,会根据需要将找到的方法实现缓存到类对象的缓存中,然后解锁运行时锁,并根据需要返回找到的方法实现或空值。

动态决议 resolveMethod_locked

当慢速查找依然没有找到IMP时,会进入方法动态解析阶段,源码如下:

// 尝试方法解析器if (slowpath(behavior & LOOKUP_RESOLVER)) {behavior ^= LOOKUP_RESOLVER;return resolveMethod_locked(inst, sel, cls, behavior);}

这里调用了resolveMethod_locked方法,下面是它的源代码:

static NEVER_INLINE IMP
resolveMethod_locked(id inst, SEL sel, Class cls, int behavior)
{runtimeLock.assertLocked();ASSERT(cls->isRealized());//**加锁**runtimeLock.unlock();//**判断是否是元类**if (! cls->isMetaClass()) {//**不是元类,调用resolveInstanceMethod方法**resolveInstanceMethod(inst, sel, cls);} else {//**是元类,调用resolveClassMethod**resolveClassMethod(inst, sel, cls);//**如果调用上面的方法还没有找到,尝试调用resolveInstanceMethod**//**原因是根据isa的继承链,根元类的父类是NSObject,所以在元类中如果没有找到**//**最后可能会在NSObjct中找到目标方法**if (!lookUpImpOrNilTryCache(inst, sel, cls)) {resolveInstanceMethod(inst, sel, cls);}}//**重新调用lookUpImpOrForwardTryCache方法,返回方法查找流程**//**因为已经进行过一次动态方法决议,下次将不会再进入,所以不会造成死循环**return lookUpImpOrForwardTryCache(inst, sel, cls, behavior);
}
  • 首先判断进行解析的是否是元类

  • 如果不是元类,则调用_class_resolveInstanceMethod进行实例方法动态解析

  • 如果是元类,则调用_class_resolveClassMethod进行类方法动态解析

  • b完成类方法动态解析后,再次查询cls中的imp,如果没有找到,则进行一次对象方法动态解析

  • 最后执行 lookUpImpOrForwardTryCache函数

    resolveInstanceMethodresolveClassMethod也称为方法的动态决议。

    resolveInstanceMethod方法

static void resolveInstanceMethod(id inst, SEL sel, Class cls)
{runtimeLock.assertUnlocked();//**如果目标类没有初始化,直接报错**ASSERT(cls->isRealized());//**创建一个方法名为resolveInstanceMethod的SEL**SEL resolve_sel = @selector(resolveInstanceMethod:);//**判断resolveInstanceMethod是否在目标类中实现**//**如果我们的类是继承自NSObject的话,那么这个判断就永远为false**//**因为在NSObject中已经默认实现了resolveInstanceMethod方法**//**因为是去cls->ISA也就是元类中查找,所以我们可以断定,resolveInstanceMethod是个类方法**if (!lookUpImpOrNilTryCache(cls, resolve_sel, cls->ISA(/*authenticated*/true))) {// Resolver not implemented.return;}//**强制类型转换objc_msgSend**BOOL (*msg)(Class, SEL, SEL) = (typeof(msg))objc_msgSend;//**通过objc_msgSend方法调用resolveInstanceMethod**bool resolved = msg(cls, resolve_sel, sel);//**拼接上LOOKUP_NIL参数后,重新调用方法查找流程**//**虽然调用了resolveInstanceMethod,但是这个返回值是bool**//**所以我们要获取对应的imp,还是需要通过方法查找流程**//**如果通过resolveInstanceMethod添加了方法,就缓存在类中**//**没添加,则缓存forward_imp**IMP imp = lookUpImpOrNilTryCache(inst, sel, cls);//**组装相应的信息**if (resolved  &&  PrintResolving) {if (imp) {………}else {………}}
}

首先创建一个方法名为resolveInstanceMethodSEL对象resolve_sel;

然后判断resolve_sel是否实现,如果继承NSObject则必定已经实现,这里通过cls->ISA可以知道,resolveInstanceMethod是个类方法

通过objc_ msgSend直接调用resolveInstanceMethod方法,因为是直接对cls发送消息,所以也可以看出resolveInstanceMethods类方法;

调用lookUpImpOrNilTryCache方法,重新返回到方法查找的流程当中去;

resolveClassMethod方法

static void resolveClassMethod(id inst, SEL sel, Class cls)
{runtimeLock.assertUnlocked();ASSERT(cls->isRealized());ASSERT(cls->isMetaClass());//**判断resolveClassMethod是否实现,NSObject中默认实现**if (!lookUpImpOrNilTryCache(inst, @selector(resolveClassMethod:), cls)) {// Resolver not implemented.return;}//**获取目标类**Class nonmeta;{mutex_locker_t lock(runtimeLock);nonmeta = getMaybeUnrealizedNonMetaClass(cls, inst);// +initialize path should have realized nonmeta alreadyif (!nonmeta->isRealized()) {_objc_fatal("nonmeta class %s (%p) unexpectedly not realized",nonmeta->nameForLogging(), nonmeta);}}//**强制类型转换objc_msgSend**BOOL (*msg)(Class, SEL, SEL) = (typeof(msg))objc_msgSend;//**通过objc_msgSend调用类中的resolveClassMethod方法**bool resolved = msg(nonmeta, @selector(resolveClassMethod:), sel);//**拼接上LOOKUP_NIL参数后,重新调用方法查找流程**//**类方法实际上就是元类对象中的对象方法,所以可以通过方法查找流程在元类中查找**//**如果通过resolveClassMethod添加了,就缓存方法在元类中**//**没添加,则缓存forward_imp**IMP imp = lookUpImpOrNilTryCache(inst, sel, cls);if (resolved  &&  PrintResolving) {if (imp) {……}else {……}}
}

这个方法与resolveInstanceMethod比较类似,如果通过resolveClassMethod方法添加了目标imp,则将其缓存在目标元类中,否则缓存forward_imp

lookUpImpOrNilTryCache方法

resolveInstanceMethodresolveClassMethod中都会调用的lookUpImpOrNilTryCache方法

extern IMP lookUpImpOrNilTryCache(id obj, SEL, Class cls, int behavior = 0);IMP lookUpImpOrNilTryCache(id inst, SEL sel, Class cls, int behavior)
{//**这里behavior没传,所以是默认值0**//**behavior | LOOKUP_NIL = 0 | 4 = 4**return _lookUpImpTryCache(inst, sel, cls, behavior | LOOKUP_NIL);
}

给参数behavior拼接上LOOKUP_NIL然后调用_lookUpImpTryCache方法

lookUpImpTryCache方法

ALWAYS_INLINE
static IMP _lookUpImpTryCache(id inst, SEL sel, Class cls, int behavior)
{runtimeLock.assertUnlocked();//**判断类是否初始化**if (slowpath(!cls->isInitialized())) {//**没有初始化直接调用lookUpImpOrForward**//**里面针对没初始化的类,有相关处理**return lookUpImpOrForward(inst, sel, cls, behavior);}//**去缓存中,查找sel是否有对应的imp**IMP imp = cache_getImp(cls, sel);//**找到了则跳去done**if (imp != NULL) goto done;//**没找到继续往下走,去共享缓存中查找**
#if CONFIG_USE_PREOPT_CACHESif (fastpath(cls->cache.isConstantOptimizedCache(/* strict */true))) {imp = cache_getImp(cls->cache.preoptFallbackClass(), sel);}
#endif//**没找到对应的imp,调用lookUpImpOrForward方法查找,behavior = 4**//** 4 & 2 = 0 ,所以这次方法查找不会再次进行动态方法决议**//**将_objc_msgForward_impcache缓存起来,方便下次直接返回**if (slowpath(imp == NULL)) {return lookUpImpOrForward(inst, sel, cls, behavior);}done://**命中缓存中,并且sel对应的imp为_objc_msgForward_impcache**//**说明动态方法决议已经执行过,且没有添加imp,则直接返回空**if ((behavior & LOOKUP_NIL) && imp == (IMP)_objc_msgForward_impcache) {return nil;}//**说明动态方法决议中添加了对应的imp**return imp;
}
  • 首先判断类是否初始化,如果没有初始化则直接调用lookUpImpOrForward,里面有针对没初始化的类进行相应的处理;

  • 然后去缓存中进行方法的快速查找,找到了就去done

  • 缓存中没找到,如果支持共享缓存,则去共享缓存中查找

  • 都没有查找到,则通过慢速方法查找去查找方法,由于behavior 的值发生改变,这次慢速查找不会再次调用动态方法决议

  • done流程中,如果已经执行过动态方法决议且并没有添加imp,则缓存中的sel对应imp_objc_msgForward_impcache,这时直接返回nil。否则返回添加的imp实现。

如果系统在动态决议阶段没有找到实现,就会进入消息转发阶段。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/873570.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

PhantomJs将html生成img|pdf

PhantomJS PhantomJS是一个可编程的无头浏览器,‌它基于WebKit内核,‌通过JavaScript API进行脚本化操作,它对各种web标准有快速和原生化的支持,包括DOM处理、CSS选择器、JSON、Canvas和SVG。‌无头浏览器指的是一个完整的浏览器内…

Linux——多路复用之poll

目录 前言 一、poll的认识 二、poll的接口 三、poll的使用 前言 前面我们学习了多路复用的select,知道多路复用的原理与select的使用方法,但是select也有许多缺点,导致他的效率不算高。今天我们来学习poll的使用,看看poll较于…

Linux先行一步

📑打牌 : da pai ge的个人主页 🌤️个人专栏 : da pai ge的博客专栏 ☁️宝剑锋从磨砺出,梅花香自苦寒来 ☁️运维工程师的职责:监…

初识模板【C++】

P. S.:以下代码均在VS2022环境下测试,不代表所有编译器均可通过。 P. S.:测试代码均未展示头文件stdio.h的声明,使用时请自行添加。 博主主页:LiUEEEEE                        …

AV1技术学习:Intra Prediction

对于帧内预测模式编码块,亮度分量的预测模式和色度分量的预测模式在比特流中分别发出信号。亮度预测模式是基于相邻左侧和上侧两个编码块预测上下文的概率模型进行熵编码的。色度预测模式的熵编码取决于色度预测模式的状态。帧内预测以变换块为单位,并使…

Linux下文件I/O操作

读取 time.txt 文件&#xff0c;写入到time_2.txt 一、函数 1.1、open() 函数 #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> int open(const char *pathname, int flags); int open(const char *pathname, int flags, mode_t mode);…

RDMA 高性能架构基本原理与设计方案

在进行本文的学习学习之前&#xff0c;我们先对RDMA是什么做一个简单的科普与认识&#xff1a;一文带你了解什么是RDMA-CSDN博客 目录&#xff1a; 目录&#xff1a; 一、RDMA和传统网络方案的比较 1.1 传统网络方案&#xff1a; 1.1.1 缺点一&#xff1a;以太网卡&#xff0…

debian 更新源

前言 实现一键替换在线源 一键更新源 Debian 全球镜像站以下支持现有debian 11 12 echo "Delete the default source" rm -rf /etc/apt/sources.listecho "Build a new source" cat <<EOF>>/etc/apt/sources.list.d/debian.sources Types:…

Tensorflow入门实战 T09进行猫狗识别2

目录 1、前言 2、代码 3、运行结果 4、反思 本文为&#x1f517;365天深度学习训练营 中的学习记录博客&#x1f356; 原作者&#xff1a;K同学啊 | 接辅导、项目定制 1、前言 本周学习内容为&#xff0c;采用自己设置的vgg-16网络进行猫狗识别&#xff0c;使用的模型是YO…

自动驾驶三维车道线检测系列—LATR: 3D Lane Detection from Monocular Images with Transformer

文章目录 1. 概述2. 背景介绍3. 方法3.1 整体结构3.2 车道感知查询生成器3.3 动态3D地面位置嵌入3.4 预测头和损失 4. 实验评测4.1 数据集和评估指标4.2 实验设置4.3 主要结果 5. 讨论和总结 1. 概述 3D 车道线检测是自动驾驶中的一个基础但具有挑战性的任务。最近的进展主要依…

vscode搭建PyQt + Quick开发环境

VScode搭建PyQt Quick开发环境 目录 环境准备 &#x1f514;安装必要的Python包 &#x1f514;&#x1f50e; PyQt5和PySide2的区别&#x1f4be; 安装PyQt5&#x1f4be; 安装PySide2 配置VScode &#x1f514;&#x1f4bb; 安装扩展 代码示例 &#x1f514;✔ Python调用Qt…

【Django】django自带后台管理系统样式错乱,uwsgi启动css格式消失的问题

正常情况&#xff1a; ERROR&#xff1a;&#xff08;css、js文件加载失败&#xff09; 问题&#xff1a;CSS加载的样式没有了&#xff0c;原因&#xff1a;使用了django自带的admin&#xff0c;在使用 python manage.py runserver启动 的时候&#xff0c;可以加载到admin的文…

如何学习Spark:糙快猛的大数据之旅

作为一名大数据开发者,我深知学习Spark的重要性。今天,我想和大家分享一下我的Spark学习心得,希望能够帮助到正在学习或准备学习Spark的朋友们。 目录 Spark是什么?学习Spark的"糙快猛"之道1. 不要追求完美,在实践中学习2. 利用大模型作为24小时助教3. 根据自己的节…

无人机的发展前景大吗?

随着科技的飞速发展&#xff0c;无人机&#xff08;Unmanned Aerial Vehicle, UAV&#xff09;作为一种新兴的航空器&#xff0c;已逐渐从军事领域渗透到民用领域。无人机的应用广泛&#xff0c;包括但不限于航拍、物流配送、环境监测、农业植保、应急救援等多个领域。本文旨在…

Chromium CI/CD 之Jenkins实用指南2024-在Windows节点上创建任务(九)

1. 引言 在现代软件开发流程中&#xff0c;持续集成&#xff08;CI&#xff09;和持续交付&#xff08;CD&#xff09;已成为确保代码质量和加速发布周期的关键实践。Jenkins作为一款广泛应用的开源自动化服务器&#xff0c;通过其强大的插件生态系统和灵活的配置选项&#xf…

十七、【机器学习】【非监督学习】- K-均值 (K-Means)

系列文章目录 第一章 【机器学习】初识机器学习 第二章 【机器学习】【监督学习】- 逻辑回归算法 (Logistic Regression) 第三章 【机器学习】【监督学习】- 支持向量机 (SVM) 第四章【机器学习】【监督学习】- K-近邻算法 (K-NN) 第五章【机器学习】【监督学习】- 决策树…

静态代理与动态代理的区别与选择

在当今软件开发领域&#xff0c;代理模式作为一种重要的设计模式&#xff0c;广泛应用于增强现有对象功能、控制访问权限以及实现远程调用等场景。本文旨在深入探讨静态代理与动态代理之间的核心区别&#xff0c;帮助开发者理解两者在实现机制、灵活性、性能表现及适用场景上的…

Filebeat k8s 部署(Deployment)采集 PVC 日志发送至 Kafka——日志处理(二)

文章目录 前言Filebeat Configmap 配置Filebeat Deployment验证总结 前言 在上篇文章中总结了 Django 日志控制台输出、文件写入按天拆分文件&#xff0c;自定义 Filter 增加 trace_id 以及过滤——日志处理&#xff08;一)&#xff0c;将日志以 JSON 格式写入日志文件。我们的…

无人机侦察:二维机扫雷达探测设备技术详解

二维机扫雷达探测设备采用机械扫描方式&#xff0c;通过天线在水平方向和垂直方向上的转动&#xff0c;实现对目标空域的全方位扫描。雷达发射机发射电磁波信号&#xff0c;遇到目标后产生反射&#xff0c;反射信号被雷达接收机接收并处理&#xff0c;进而得到目标的位置、速度…

spring MVC 简单的案例(2)用户登录

一、用户登录 1&#xff09;前端代码 index.html <!doctype html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport"content"widthdevice-width, user-scalableno, initial-scale1.0, maxim…