Pandas_DataFrame读写详解:案例解析(第24天)

系列文章目录

一、 读写文件数据
二、df查询数据操作
三、df增加列操作
四、df删除行列操作
五、df数据去重操作
六、df数据修改操作


提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档

文章目录

  • 系列文章目录
  • 前言
    • 一、 读写文件数据
      • 1.1 读写excel文件
      • 1.2 读写csv文件
      • 1.3 读写mysql数据库
    • 二、df查询数据操作
      • 2.1 查询df子集基本方法
      • 2.2 loc/iloc获取子集
        • 2.2.1 loc/iloc基本介绍
        • 2.2.2 loc属性获取子集
        • 2.2.3 iloc属性获取子集
      • 2.3 query函数获取子集
      • 2.4 isin函数获取子集
    • 三、df增加列操作
    • 四、df删除行列操作
    • 五、df数据去重操作
    • 六、df数据修改操作
      • 6.1 直接修改数据
      • 6.2 replace函数修改
      • 6.3 s对象通过apply函数执行自定义函数
      • 6.4 df对象通过apply函数执行自定义函数
      • 6.5 df对象通过applymap函数执行自定义函数


前言

本文主要详解了Pandas_DataFrame的读写。


提示:以下是本篇文章正文内容,下面案例可供参考

一、 读写文件数据

可以参考pandas的官网文档 https://pandas.pydata.org/

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

1.1 读写excel文件

  • 数据保存到excel文件

    # 导入模块
    import pandas as pd
    # 构造数据集
    data = [[1,'张三', '1990-10-02', 34],[2, '李四', '2000-03-03', 24],[3, '王五', '2005-12-23', 19],[4, '隔壁老王', '1982-11-12',42]]
    df = pd.DataFrame(data=data, columns=['id', 'name', 'birthday', 'age'])
    df
    # 存储路径
    # sheet名称
    # 是否存储行索引作为一列
    # 是否存储列名
    df.to_excel('./output/student.xls', sheet_name='student',index=True, header=True)
    
  • 读取excel文件数据

    df_excel = pd.read_excel('output/student.xls')
    df_excel
    # 通过index_col指定某列的值作为行索引, 可以写列名或列下标值
    # pd.read_excel('output/student.xls',index_col='id')
    pd.read_excel('output/student.xls',index_col=0)
    

1.2 读写csv文件

  • 数据保存到csv(逗号,分隔符)/tsv(制表符\t分隔符)文件中

    # 参数1:存储路径
    # index:是否存储行索引值
    # mode:存储的方式
    df.to_csv('output/student.csv', index=False, mode='w')
    # 存储到tsv文件中 \t
    # sep:指定列值之间的分隔符 
    df.to_csv('output/student.tsv', sep='\t')
    
  • 读取csv/tsv文件数据

    df_csv = pd.read_csv('output/student.csv')
    df_csv
    # parse_dates: 将指定的列转换成日期时间类型, 可以传入列名或列下标值
    # temp_df = pd.read_csv('output/student.csv', parse_dates=['birthday'])
    # temp_df = pd.read_csv('output/student.csv', parse_dates=[2])
    # parse_dates: 可以传入True或False, 将行索引值转换成日期时间类型, 需要和行索引值进行结合使用
    temp_df = pd.read_csv('output/student.csv',index_col='birthday' ,parse_dates=True)
    temp_df.info()
    # 读取tsv文件数据
    pd.read_csv('output/student.tsv', sep='\t', index_col=0)
    

1.3 读写mysql数据库

  • 保存数据到mysql数据库

    from sqlalchemy import create_engine
    # 创建数据库链接对象
    engine = create_engine('mysql+pymysql://root:123456@192.168.88.100:3306/BI_db')
    # name:表名, 表不存在会自动创建
    # con:数据库链接对象
    # index:是否存储行索引
    # if_exists:存储方式, append:追加写 replace:覆盖写
    df.to_sql(name='student', con=engine, index=False, if_exists='append')
    
  • 读取mysql数据库数据

    # sql:可以读取表名, 也可以读取sql语句
    # columns: 指定读取表中的字段
    df_mysql = pd.read_sql(sql='student', con=engine, columns=['name', 'birthday'])
    df_mysql
    # 读取sql语句
    pd.read_sql(sql='select * from student limit 2', con=engine)
    # 只能读取sql语句
    pd.read_sql_query(sql='select * from student limit 2;',con=engine)
    # 只能读取表名
    pd.read_sql_table(table_name='student', con=engine)
    

二、df查询数据操作

2.1 查询df子集基本方法

  • head()&tail()

    import pandas as pd
    # 加载数据集, 链家租房数据集
    df = pd.read_csv('data/LJdata.csv')
    df
    df.head()
    df.tail()
    df.head(n=8)
    
  • 获取一列或多列数据

    # df[列名]或df.列名
    # 获取一列数据, 返回s对象
    df['价格']
    type(df['价格'])
    df.价格
    # 获取一列数据, 返回df对象
    df[['价格']]
    # 获取多列数据 df[[列名1, 列名2, ...]]
    # 传入列名的列表
    df[['区域', '面积', '价格']]
    
  • 布尔值向量获取行数据

    # 布尔值s对象 df['价格']>8000
    df[df['价格']>8000]
    # 布尔值列表
    df_head = df.head()
    df_head
    # 构建布尔值列表
    bool_list = [True,False,True,False,True]
    df_head[bool_list]
    # 布尔值数组
    import numpy as np
    n1 = np.array([True,False,True,False,True])
    n1
    df_head[n1]
    
  • 行索引下标切片获取行数据

    # df[起始行下标值:结束行下标值:步长]  类似于字符串/列表/元组的切片操作
    # 下标值(只能是整数)和索引值(整数,字符串,日期时间)不是一个东西
    # 左闭右开 -> 包含起始值, 不包含结束值
    temp_df = df.head(10)
    temp_df
    # 获取1,3,5行数据
    temp_df[:5:2]
    # 获取前3行数据
    temp_df[:3]
    # 步长为负数, 倒序获取行数据, 下标值可以为负数
    temp_df[-1:-3:-1]
    

2.2 loc/iloc获取子集

2.2.1 loc/iloc基本介绍

loc和iloc是s/df对象的属性

loc是通过索引值(肉眼看到的值), iloc是通过索引下标值(0,1,2,3…) 获取数据

df.loc[行索引值] -> 获取行数据

df.loc[行索引值, 列名] -> 获取行列数据

df.iloc[行索引下标] -> 获取行数据

df.iloc[行索引下标, 列名下标] -> 获取行列数据

2.2.2 loc属性获取子集
# 获取一行数据 df[行索引值]
# 获取第5行数据, 返回s对象
temp_df.loc[4]
# 获取第5行数据, 返回df对象
temp_df.loc[[4]]
# 获取多行数据 df[[行索引值1, 行索引值2, ...]]
# 获取第1, 3, 5行数据
temp_df.loc[[0, 2, 4]]
# 行索引值切片获取行数据
# df.loc[起始索引值:结束索引值:步长]
# 左闭右闭 -> 包含起始值, 包含结束值
# 获取第2,3,4行数据
temp_df.loc[1:3]
# 根据索引下标值
temp_df[1:3]
# 隔一行获取一行数据
temp_df.loc[::2]
# 倒序获取子集, 起始值和结束值要反过来, 步长为负数
temp_df.loc[8:2:-1]
# 布尔值向量获取行数据 df.loc[布尔值向量]
temp_df['朝向']=='南'
temp_df.loc[temp_df['朝向']=='南']
# 布尔值向量结合列名获取行列数据 df.loc[布尔值向量, [列名1, 列名2, ...]]
temp_df.loc[temp_df['朝向']=='南', ['地址', '朝向']]
# 行索引值结合列名获取行列数据 df.loc[[行索引值1, 行索引值2,...],[列名1, 列名2, ...]]
# 获取某个值数据
temp_df.loc[0, '价格']
# 获取多行多列数据
temp_df.loc[[0, 2, 4], ['地址', '户型', '价格']]
# 行索引值切片结合列名获取行列数据 df.loc[起始索引值:结束索引值:步长, [列名1, 列名2, ...]]
temp_df.loc[:4:2, ['地址', '面积', '价格']]
2.2.3 iloc属性获取子集
# 获取一行数据 df.iloc[行下标值]
# 获取第一行数据, 返回s对象
temp_df.iloc[0]
temp_df.iloc[[0]]
# 获取最后一行数据
temp_df.iloc[-1]
# 获取多行数据 df.iloc[[行下标1, 行下标2, ...]]
temp_df.iloc[[0, 2, 4]]
# 行下标切片获取多行数据 df.iloc[起始下标值:结束下标值:步长] 等同于 df[起始下标值:结束下标值:步长]
# 左闭右开
temp_df.iloc[:5:2]
temp_df[:5:2]
# 行列下标切片获取子集 df.iloc[起始下标值:结束下标值:步长, 起始列下标值:结束列下标值:步长]
# 获取1,3,5行, 并且获取地址,面积和朝向列
temp_df.iloc[:5:2, 1:6:2]
# 行下标切片和列下标值获取子集 df.iloc[起始下标值:结束下标值:步长, [列下标1, 列下标2, ...]]
# 获取1,3,5行, 并且获取地址,面积和朝向列
temp_df.iloc[:5:2, [1, 3, 5]]
# 行列下标值获取子集 df.iloc[[行下标值1, 行下标值2, ...], [列下标值1, 列下标值2, ...]]
# 获取1,3,5行, 并且获取地址,面积和朝向列
temp_df.iloc[[0, 2, 4], [1, 3, 5]]
# 行下标值和列下标切片获取子集 df.iloc[[行下标值1, 行下标值2, ...], 起始列下标值:结束列下标值:步长]
# 获取1,3,5行, 并且获取地址,面积和朝向列
temp_df.iloc[[0,2,4],1:6:2]

2.3 query函数获取子集

# df.query(判断表达式) -> 判断表达式和df[布尔值向量]相同
# 获取区域列中为 望京租房 的数据
temp_df['区域'] == '望京租房'
temp_df[temp_df['区域'] == '望京租房']
# sql语句  select * from 表a where 区域 == "望京租房"
temp_df.query('区域 == "望京租房"')
# 判断表达式中有多个判断条件, 可以使用 and(&)或or(|)
# 查询租房区域为望京、天通苑、回龙观并且朝向为东、南的房源数据
# 链式调用, query函数返回新的df, 新的df继续可以调用query()
temp_df.query('区域 in ("望京租房", "天通苑租房", "回龙观租房")').query('朝向 in ("东", "南")')
temp_df.query('(区域 in ("望京租房", "天通苑租房", "回龙观租房")) & (朝向 in ("东", "南"))')
# temp_df.query('(区域 in ("望京租房", "天通苑租房", "回龙观租房")) and (朝向 in ("东", "南"))')temp_df[((temp_df["区域"]=='望京租房') | (temp_df['区域']=='天通苑租房') | (temp_df['区域']=='回龙观租房')) & ((temp_df['朝向']=='东') | (temp_df['朝向']=='南'))]

2.4 isin函数获取子集

# 判断s或df对象中的数据值是否在values列表中, 如果在返回True, 否则返回False -> s/df.isin(values=[值1, 值2, ...])
# 返回一个布尔值构成的df对象
temp_df.isin(values=['2室1厅','东'])
temp_df[temp_df.isin(values=['2室1厅','东'])]
# 返回布尔值构成的s对象
temp_df['区域'].isin(values=["望京租房", "天通苑租房", "回龙观租房"])
temp_df['区域'][temp_df['区域'].isin(values=["望京租房", "天通苑租房", "回龙观租房"])]
temp_df[temp_df['区域'].isin(values=["望京租房", "天通苑租房", "回龙观租房"])]
# 查询租房区域为望京、天通苑、回龙观并且朝向为东、南的房源数据
temp_df['区域'].isin(values=["望京租房", "天通苑租房", "回龙观租房"]) & temp_df['朝向'].isin(values=['东', '南'])
temp_df[(temp_df['区域'].isin(values=["望京租房", "天通苑租房", "回龙观租房"])) & (temp_df['朝向'].isin(values=['东', '南']))]

三、df增加列操作

# 导入模块
import pandas as pd
import warnings
warnings.filterwarnings('ignore')  # 忽略警告信息
# 加载数据集
df = pd.read_csv('data/LJdata.csv')
# 获取前5行数据
temp_df = df.head().copy()
temp_df
# 在df末尾增加新列数据 df['新列名'] = 常数值/列表/series对象
# 在df末尾新增一列省份列, 值都为北京 -> 常数值
temp_df['省份'] = '北京'
temp_df
# 在df末尾新增一列区县列, 值为['朝阳区', '朝阳区', '西城区', '昌平区', '朝阳区'] -> 列表
# df的行数要和新增列表中的元素个数要相等
temp_df['区县'] = ['朝阳区', '朝阳区', '西城区', '昌平区', '朝阳区']
temp_df
# 在df末尾新增一列新价格列, 在原价格上加1000 -> series对象 (s对象的运算)
temp_df['新价格'] = temp_df['价格'] + 1000
temp_df
# 通过insert()在指定位置新增一列
# df.insert(loc=列下标值, column=新列名, value=常数值/列表/s对象)
# 在区域和地址列之间新增一列国家列, 值都为中国
temp_df.insert(loc=1, column='国家', value='中国')
temp_df
# 在价格新增一列价格2列, 值为 价格和新价格的求和
temp_df.insert(loc=6, column='价格2', value=temp_df['价格'] + temp_df['新价格'])
temp_df

四、df删除行列操作

# df.drop(labels=, axis=, inplace=)
# labels: 根据 行索引值或列名 进行删除
# axis: 按行或列删除, 默认是按行 0或index; 按列 1或columns
# inplace: 是否在源数据集上删除, 默认是False, True
# 删除第1, 3, 5行数据, 默认删除行数据
drop_df = temp_df.drop(labels=[0, 2, 4])
drop_df
# 删除价格2列数据
temp_df.drop(labels='价格2', axis='columns')
# 在源df上删除价格2列数据
temp_df.drop(labels='价格2', axis=1, inplace=True)
# 保留地址, 户型, 面积三列数据
temp_df[['地址', '户型', '面积']]

五、df数据去重操作

# s/df.drop_duplicates(subset=,keep=,inplace=)
# subset: 默认不写, 所有列值都相同的行数据; 可以通过列名列表指定对应列相同的行数据
# keep: 默认保留第一条数据 first, 保留最后一条数据 last, 删除所有重复数据 false
# inplace: 是否在源数据集上修改
# 根据所有列相同的行数据进行去重
temp_df.drop_duplicates()
# 根据户型和朝向列判断是否有重复行数据
# 默认保留第一条重复数据
temp_df.drop_duplicates(subset=['户型', '朝向'])
# 保留最后一条重复数据
temp_df.drop_duplicates(subset=['户型', '朝向'], keep='last')
# 删除重复的数据
temp_df['朝向'].drop_duplicates(keep=False)
# df对象没有unique操作
temp_df['朝向'].unique() # 返回数组
temp_df['朝向'].nunique()  # 去重计数 count(distinct)

六、df数据修改操作

6.1 直接修改数据

# 直接修改数据值 df[列名] = 新值 -> 常数值/列表/s对象
temp_df = df.head().copy()
temp_df
# 修改看房人数列, 改为 100
temp_df['看房人数'] = 100
temp_df
# 修改面积列, 改为 [70, 99, 90, 120, 80] -> df的行数和列表中的元素个数相同
temp_df['面积'] = [70, 99, 90, 120, 80]
temp_df
# 修改价格列, 价格列+1000
temp_df['价格'] = temp_df['价格'] + 1000
temp_df
# 获取s对象
temp_s = temp_df['价格']
temp_s# s[索引下标值] = 新值
temp_s[2] = 20000
temp_s

6.2 replace函数修改

# 通过replace函数实现修改
# s/df.replace(to_replace=, value=, inplace=)
# to_replace:需要替换的值
# value:替换后的值
# 将2室1厅替换成3室2厅
temp_df.replace(to_replace='2室1厅', value='3室2厅', inplace=True)
temp_df
temp_df.replace(to_replace=[20000, 100], value=999)
# 对s对象实现替换操作
temp_df['朝向'].replace(to_replace='东南', value='北')

6.3 s对象通过apply函数执行自定义函数

temp_df = df.head().copy()
temp_df
# 编写自定义函数 根据区域列的值判断是否为天通苑租房, 是返回昌平区, 否返回其他区
# 最少接受一个形参, 形参对应的实参值是s对象中每个值
def func1(x):print('x的值是->',x)if x == '天通苑租房':return '昌平区'else:return '其他区'
# 通过apply函数调用自定义函数 s/df.apply(自定义函数名)
temp_df['区域'] = temp_df['区域'].apply(func1)
temp_df
temp_df = df.head().copy()
temp_df
# 定义自定义函数式, 可以定义多个形参
def func2(x, arg1, arg2):
#     print('x的值是->', x)
#     print('arg1的值是->', arg1)
#     print('arg2的值是->', arg2)if x == '天通苑租房':return arg1else:return arg2
# s对象调用自定义函数
# args=(arg1, arg2)
temp_df['区域'].apply(func2, args=('昌平区', '其他区'))
# 形参名=实参值
temp_df['区域'].apply(func2, arg1='昌平区', arg2='其他区')

6.4 df对象通过apply函数执行自定义函数

  • 按列计算

    # df对象调用apply函数来执行自定义函数
    # 自定义函数接收的是df中一列或一行数据
    # 定义自定义函数
    def func3(x, arg1):# x是df中一行或一列数据 -> s对象print('x的值是->', x)print('arg1的值是->', arg1)print(x.__dict__)# _name:获取当前列的列名, 或者是获取当前行的行索引值if x._name == '价格':# s对象和数值型变量计算return x + arg1else:return x# 默认是按列进行处理 axis=0
    # temp_df.apply(func3, args=(1000,), axis=0)
    temp_df.apply(func3, arg1 = 2000, axis=0)
    
  • 按行计算

    # 如果区域列的值为望京租房, 修改价格列的值为arg1
    # 自定义函数
    def func4(x, arg1):print('x的值是->', x)# 根据s对象的索引值获取数据值 s[索引值]if x['区域']== '望京租房':x['价格'] = arg1return xelse:return x# 按行进行处理, axis=1
    temp_df.apply(func4, arg1=3000, axis=1)
    

6.5 df对象通过applymap函数执行自定义函数

# df对象调用applymap函数来执行自定义函数
# 自定义函数中接收的是df中每个值, 不再是一列或一行数据
# 自定义函数
def func5(x):print('x的值是->', x)if x in ['燕莎租房','望京租房','团结湖租房']:return '朝阳区'elif x == '天通苑租房':return '昌平区'elif x == '团结湖租房':return '西城区'else:return xtemp_df.applymap(func5)

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/865196.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Web 基础与 HTTP 协议

Web 基础与 HTTP 协议 一、Web 基础1.1域名和 DNS域名的概念Hosts 文件DNS(Domain Name System 域名系统)域名注册 1.2网页与 HTML网页概述HTML 概述网站和主页Web1.0 与 Web2.0 1.3静态网页与动态网页静态网页动态网页 二、HTTP 协议1.1HTTP 协议概述1.…

秋招——MySQL补充——MySQL是如何加行级锁

文章目录 引言正文什么SQL语句会加行级锁查询操作增加对应的行级锁事务的写法 update和delete修改操作也会增加行级锁 行级锁有哪些种类记录锁间隙锁Next-Key锁 MySQL是如何加行级锁?唯一索引等值查询查询记录是存在的查询记录是不存在的 唯一索引范围查找针对大于或…

《梦醒蝶飞:释放Excel函数与公式的力量》8.4 COUNTIF函数

8.4 COUNTIF函数 COUNTIF函数是Excel中常用的统计函数之一,用于统计指定条件下的单元格数量。通过COUNTIF函数,我们可以轻松地对数据进行条件筛选和统计分析。下面将从函数简介、语法、基本用法、注意事项、高级应用、实战练习和小节几个方面展开介绍。…

爬虫笔记19——代理IP的使用

访问网站时IP被阻止 有些网站会设置特定规则来限制用户的访问,例如频率限制、单一账户多次登录等。 网站为了保护自身安全和用户体验,会设置防御机制,将涉嫌恶意行为的IP地址加入黑名单并屏蔽访问。如果用户在使用网站时违反了这些规则&…

格式化选NTFS还是exFAT 格式化NTFS后Mac不能用怎么办 移动硬盘格式化ntfs和exfat的区别

面对硬盘、U盘或移动硬盘的格式化决策,NTFS与exFAT作为主流的文件系统,用户在选择时可以根据它们的不同特点来选择适用场景。下面我们来看看格式化选NTFS还是exFAT,格式化NTFS后Mac不能用怎么办的相关内容。 一、格式化选NTFS还是exFAT 在数…

十四、【源码】@Autowired、@Value、@Component

源码地址:https://github.com/spring-projects/spring-framework 仓库地址:https://gitcode.net/qq_42665745/spring/-/tree/14-auto-property Autowired、Value、Component 注解注入属性的实现分散在refresh容器的各个方法中,梳理&#x…

docker 搭建 AI大数据模型 --- 使用GPU

docker 搭建 AI大数据模型 — 使用GPU方式 搭建本地大模型,最简单的方法!效果直逼GPT 服务器GPU系统HP580 G8P40Rocky9.2 安装程序AnythingLLM前端界面Open WebUIChatOllamaollama 一、AnythingLLM 介绍 AnythingLLM 是 Mintplex Labs Inc. 开发的一…

9.(vue3.x+vite)修改el-input,el-data-picker样式

效果预览 二:相关代码 <template><div style="padding: 50px"><el-input placeholder="请输入模型名称" style="width: 260px" /><br /

Java灵活用工2.0报价单微信小程序+APP+微信公众号 源码

&#x1f680;【开篇&#xff1a;解锁灵活用工的高效时代】 在人力资源市场日益灵活的今天&#xff0c;如何快速、准确地生成报价单&#xff0c;成为企业吸引并管理自由职业者的关键。而“灵活用工报价单微信小程序APP微信公众号源码”正是这样一款集高效、便捷于一体的解决方…

YOLO在目标检测与视频轨迹追踪中的应用

YOLO在目标检测与视频轨迹追踪中的应用 引言 在计算机视觉领域&#xff0c;目标检测与视频轨迹追踪是两个至关重要的研究方向。随着深度学习技术的飞速发展&#xff0c;尤其是卷积神经网络&#xff08;CNN&#xff09;的广泛应用&#xff0c;目标检测与视频轨迹追踪的性能得到…

YOLO-V2

一、V2版本细节升级 1、YOLO-V2&#xff1a; 更快&#xff01;更强 1.1 做的改进内容 1. YOLO-V2-Batch Normalization V2版本舍弃Dropout&#xff0c;卷积后每一层全部加入Batch Normalization网络的每一层的输入都做了归一化&#xff0c;收敛相对更容易经过Batch Norma…

【C++】相机标定源码笔记- RGB 相机与 ToF 深度传感器校准类

类的设计目标是为了实现 RGB 相机与 ToF 深度传感器之间的高精度校准&#xff0c;从而使两种类型的数据能够在同一个坐标框架内被整合使用。这在很多场景下都是非常有用的&#xff0c;比如在3D重建、增强现实、机器人导航等应用中&#xff0c;能够提供更丰富的场景信息。 -----…

在卷积神经网络(CNN)中为什么可以使用多个较小的卷积核替代一个较大的卷积核,以达到相同的感受野

在卷积神经网络&#xff08;CNN&#xff09;中为什么可以使用多个较小的卷积核替代一个较大的卷积核&#xff0c;以达到相同的感受野 flyfish 在卷积神经网络&#xff08;CNN&#xff09;中&#xff0c;可以使用多个较小的卷积核替代一个较大的卷积核&#xff0c;以达到相同的…

交叉编译tslib库和上机测试

目录 一、tslib 介绍 二、tslib 框架分析 三、交叉编译、测试 tslib 1.安装工具链 tslib &#xff08;1&#xff09;设置交叉编译工具链 &#xff08;2&#xff09;进入tslib目录 &#xff08;3&#xff09;安装工具链 &#xff08;4&#xff09;确定工具链中头文件、库…

千亿级市场迎来新增量:中老年K歌需求高涨,解读线上+线下创新方向

干货抢先看 1. 我国KTV产业一度达到千亿规模&#xff0c;近年来随着线下娱乐方式多样化&#xff0c;KTV逐渐被年轻用户抛弃&#xff0c;中老年成为行业关键增量。 2. 数据显示&#xff0c;全国量贩式KTV中&#xff0c;60-70岁年龄段用户数同比增长29.6%&#xff0c;订单量同比…

【分布式系统】监控平台Zabbix介绍与部署(命令+截图版)

目录 一.Zabbix概述 1.为什么要做监控 2.zabbix 是什么 3.zabbix 监控原理 4.zabbix 6.0 新特性 5.zabbix 6.0 功能组件 Zabbix Server 数据库 Web 界面 Zabbix Agent Zabbix Proxy Java Gateway 补充 二.部署安装Zabbix 6.0 1.初始化环境 2.安装nginx跟php&am…

计算机网络网络层复习题2

一. 单选题&#xff08;共22题&#xff0c;100分&#xff09; 1. (单选题)如果 IPv4 数据报太大&#xff0c;会在传输中被分片&#xff0c;对分片后的数据报进行重组的是&#xff08; &#xff09;。 A. 中间路由器B. 核心路由器C. 下一跳路由器D. 目的主机 我的答案: D:目的…

图文控件TextImageView

图片文字组合控件&#xff0c;可以灵活的控制图片大小 class TextImageView : AppCompatTextView {private var mStartWidth: Int 0private var mStartHeight: Int 0private var mTopWidth: Int 0private var mTopHeight: Int 0private var mEndWidth: Int 0private var …

不懂PyQt5垂直布局?只需3分钟即可学会

PyQt5中实现垂直布局&#xff0c;主要使用QVBoxLayout类。该布局管理器将子控件垂直排列&#xff0c;并可以根据需要自动调整大小。使用QVBoxLayout可以方便地构建从上到下排列的界面元素。 import sys from PyQt5.QtWidgets import QApplication, QVBoxLayout, QWidget, QPus…

一个例子理解傅里叶变换的计算过程

假设我们有一个简单的信号&#xff0c;由两个不同频率的正弦波组成&#xff0c;我们希望通过傅里叶变换来分析其频谱。 示例信号 假设我们有一个信号 &#xff1a; 这个信号由两个频率成分组成&#xff1a;一个50 Hz的正弦波和一个120 Hz的正弦波&#xff0c;后者的振幅是前者…