内容介绍:
AI编译框架分为两种运行模式,分别是动态图模式以及静态图模式。MindSpore默认情况下是以动态图模式运行,但也支持手工切换为静态图模式。两种运行模式的详细介绍如下:
动态图模式:
动态图的特点是计算图的构建和计算同时发生(Define by run),其符合Python的解释执行方式,在计算图中定义一个Tensor时,其值就已经被计算且确定,因此在调试模型时较为方便,能够实时得到中间结果的值,但由于所有节点都需要被保存,导致难以对整个计算图进行优化。
在MindSpore中,动态图模式又被称为PyNative模式。由于动态图的解释执行特性,在脚本开发和网络流程调试过程中,推荐使用动态图模式进行调试。
具体内容:
1. 导包
import numpy as np
import mindspore as ms
from mindspore import nn, Tensor
2. 使用set_context进行动态图模式的配置
ms.set_context(mode=ms.PYNATIVE_MODE)
3. 模型构建
class Network(nn.Cell):def __init__(self):super().__init__()self.flatten = nn.Flatten()self.dense_relu_sequential = nn.SequentialCell(nn.Dense(28*28, 512),nn.ReLU(),nn.Dense(512, 512),nn.ReLU(),nn.Dense(512, 10))def construct(self, x):x = self.flatten(x)logits = self.dense_relu_sequential(x)return logitsmodel = Network()
4. 输入输出
input = Tensor(np.ones([64, 1, 28, 28]).astype(np.float32))
output = model(input)
print(output)
5. 使用set_context进行运行静态图模式的配置
ms.set_context(mode=ms.GRAPH_MODE)
6. 构建模型
class Network(nn.Cell):def __init__(self):super().__init__()self.flatten = nn.Flatten()self.dense_relu_sequential = nn.SequentialCell(nn.Dense(28*28, 512),nn.ReLU(),nn.Dense(512, 512),nn.ReLU(),nn.Dense(512, 10))def construct(self, x):x = self.flatten(x)logits = self.dense_relu_sequential(x)return logitsmodel = Network()
7. 输入输出
input = Tensor(np.ones([64, 1, 28, 28]).astype(np.float32))
output = model(input)
print(output)
静态图模式的使用场景
MindSpore编译器重点面向Tensor数据的计算以及其微分处理。因此使用MindSpore API以及基于Tensor对象的操作更适合使用静态图编译优化。其他操作虽然可以部分入图编译,但实际优化作用有限。另外,静态图模式先编译后执行的模式导致其存在编译耗时。因此,如果函数无需反复执行,那么使用静态图加速也可能没有价值。
静态图模式开启方式
通常情况下,由于动态图的灵活性,我们会选择使用PyNative模式来进行自由的神经网络构建,以实现模型的创新和优化。但是当需要进行性能加速时,我们需要对神经网络部分或整体进行加速。MindSpore提供了两种切换为图模式的方式,分别是基于装饰器的开启方式以及基于全局context的开启方式。
基于装饰器的开启方式
MindSpore提供了jit装饰器,可以通过修饰Python函数或者Python类的成员函数使其被编译成计算图,通过图优化等技术提高运行速度。此时我们可以简单的对想要进行性能优化的模块进行图编译加速,而模型其他部分,仍旧使用解释执行方式,不丢失动态图的灵活性。无论全局context是设置成静态图模式还是动态图模式,被jit修饰的部分始终会以静态图模式进行运行。
在需要对Tensor的某些运算进行编译加速时,可以在其定义的函数上使用jit修饰器,在调用该函数时,该模块自动被编译为静态图。需要注意的是,jit装饰器只能用来修饰函数,无法对类进行修饰。jit的使用示例如下:
8. 模型构建
class Network(nn.Cell):def __init__(self):super().__init__()self.flatten = nn.Flatten()self.dense_relu_sequential = nn.SequentialCell(nn.Dense(28*28, 512),nn.ReLU(),nn.Dense(512, 512),nn.ReLU(),nn.Dense(512, 10))def construct(self, x):x = self.flatten(x)logits = self.dense_relu_sequential(x)return logits
9. 使用修饰函数输入输出
input = Tensor(np.ones([64, 1, 28, 28]).astype(np.float32))@ms.jit # 使用ms.jit装饰器,使被装饰的函数以静态图模式运行
def run(x):model = Network()return model(x)output = run(input)
print(output)
10. 通过调用jit将函数转换为以静态图方式执行
class Network(nn.Cell):def __init__(self):super().__init__()self.flatten = nn.Flatten()self.dense_relu_sequential = nn.SequentialCell(nn.Dense(28*28, 512),nn.ReLU(),nn.Dense(512, 512),nn.ReLU(),nn.Dense(512, 10))def construct(self, x):x = self.flatten(x)logits = self.dense_relu_sequential(x)return logitsinput = Tensor(np.ones([64, 1, 28, 28]).astype(np.float32))def run(x):model = Network()return model(x)run_with_jit = ms.jit(run) # 通过调用jit将函数转换为以静态图方式执行
output = run(input)
print(output)
11. 当我们需要对神经网络的某部分进行加速时,可以直接在construct方法上使用jit修饰器,在调用实例化对象时,该模块自动被编译为静态图。示例如下:
class Network(nn.Cell):def __init__(self):super().__init__()self.flatten = nn.Flatten()self.dense_relu_sequential = nn.SequentialCell(nn.Dense(28*28, 512),nn.ReLU(),nn.Dense(512, 512),nn.ReLU(),nn.Dense(512, 10))@ms.jit # 使用ms.jit装饰器,使被装饰的函数以静态图模式运行def construct(self, x):x = self.flatten(x)logits = self.dense_relu_sequential(x)return logitsinput = Tensor(np.ones([64, 1, 28, 28]).astype(np.float32))
model = Network()
output = model(input)
print(output)
12. 基于context的开启方式
context模式是一种全局的设置模式。
ms.set_context(mode=ms.GRAPH_MODE) # 使用set_context进行运行静态图模式的配置class Network(nn.Cell):def __init__(self):super().__init__()self.flatten = nn.Flatten()self.dense_relu_sequential = nn.SequentialCell(nn.Dense(28*28, 512),nn.ReLU(),nn.Dense(512, 512),nn.ReLU(),nn.Dense(512, 10))def construct(self, x):x = self.flatten(x)logits = self.dense_relu_sequential(x)return logitsmodel = Network()
input = Tensor(np.ones([64, 1, 28, 28]).astype(np.float32))
output = model(input)
print(output)
静态图加速的核心思想是将计算图的构建和实际计算分开,也就是编译和运行分开。在构建阶段,MindSpore会根据完整的计算流程对原始的计算图进行优化和调整,编译得到更省内存和计算量更少的计算图。这种编译后图的结构不再改变的特性,使得我们能够更好地利用硬件资源,提升模型的执行效率。