langchain教程-(1)Prompt模板

LangChain 的核心组件

  1. 模型 I/O 封装
    • LLMs:大语言模型
    • Chat Models:一般基于 LLMs,但按对话结构重新封装
    • PromptTemple:提示词模板
    • OutputParser:解析输出
  2. 数据连接封装
    • Document Loaders:各种格式文件的加载器
    • Document Transformers:对文档的常用操作,如:split, filter, translate, extract metadata, etc
    • Text Embedding Models:文本向量化表示,用于检索等操作(啥意思?别急,后面详细讲)
    • Verctorstores: (面向检索的)向量的存储
    • Retrievers: 向量的检索
  3. 记忆封装
    • Memory:这里不是物理内存,从文本的角度,可以理解为“上文”、“历史记录”或者说“记忆力”的管理
  4. 架构封装
    • Chain:实现一个功能或者一系列顺序功能组合
    • Agent:根据用户输入,自动规划执行步骤,自动选择每步需要的工具,最终完成用户指定的功能
      • Tools:调用外部功能的函数,例如:调 google 搜索、文件 I/O、Linux Shell 等等
      • Toolkits:操作某软件的一组工具集,例如:操作 DB、操作 Gmail 等等
  5. Callbacks
    在这里插入图片描述

官方文档地址:https://python.langchain.com/docs/get_started

多轮对话封装

AIMessage, #等价于OpenAI接口中的assistant role 大模型的回复
HumanMessage, #等价于OpenAI接口中的user role
SystemMessage #等价于OpenAI接口中的system role

import os
from dotenv import load_dotenv
load_dotenv()from langchain_openai import AzureChatOpenAI
model = AzureChatOpenAI(azure_endpoint=os.environ["AZURE_OPENAI_ENDPOINT"],azure_deployment=os.environ["AZURE_OPENAI_DEPLOYMENT_NAME"],openai_api_version=os.environ["AZURE_OPENAI_API_VERSION"],temperature=0,model_kwargs={"seed": 42})from langchain.schema import (AIMessage, #等价于OpenAI接口中的assistant roleHumanMessage, #等价于OpenAI接口中的user roleSystemMessage #等价于OpenAI接口中的system role
)messages = [SystemMessage(content="你是一个课程助理。"),HumanMessage(content="我来上课了")
]
response = model(messages)
print(response)  #  AIMessage

Prompt模板封装

import os
from dotenv import load_dotenv, find_dotenv_ = load_dotenv(find_dotenv())
from langchain.prompts import ChatPromptTemplate
from langchain.prompts.chat import SystemMessagePromptTemplate, HumanMessagePromptTemplate
from langchain_openai import AzureChatOpenAItemplate = ChatPromptTemplate.from_messages([SystemMessagePromptTemplate.from_template("你是{product}的客服助手。你的名字叫{name}"),HumanMessagePromptTemplate.from_template("{query}"),]
)
llm = AzureChatOpenAI(azure_endpoint=os.environ["AZURE_OPENAI_ENDPOINT"],azure_deployment=os.environ["AZURE_OPENAI_DEPLOYMENT_NAME"],openai_api_version=os.environ["AZURE_OPENAI_API_VERSION"],temperature=0,model_kwargs={"seed": 42})prompt = template.format_messages(product="AGI课堂",name="瓜瓜",query="你是谁")response = llm(prompt)# chain = template | llm
# response = chain.invoke({"product": "AGI课堂",
#                          "name": "瓜瓜",
#                        "query": "你是谁"})print(response)  #  AIMessage

从文件加载Prompt模板

yaml格式

 _type: prompt
input_variables:["adjective", "content"]
template: Tell me a {adjective} joke about {content}.

json格式

{"_type": "prompt","input_variables": ["adjective", "content"],"template": "Tell me a {adjective} joke about {content}."
}

Template可以单独存放在.txt文件夹中

{"_type": "prompt","input_variables": ["adjective", "content"],"template_path": "simple_template.txt"
}
# cat simple_template.txt
# Tell me a {adjective} joke about {content}.from langchain.prompts import load_promptprompt = load_prompt("test.json")print(prompt.format(adjective="funny", content="fox"))
# Tell me a funny joke about fox.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/857041.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Docker Desktop进入界面时一直转圈的解决办法记录

我的win10版本如下,是支持安装的,不支持安装的,可以先升级系统版本: 起初是因为运行Docker Desktop时一直转圈,无法进入主面板,百度之,需要安装hype-v环境,找到以下 勾选Hyper-V下的…

分享由AI制定一个商城网站的开发计划及推荐的开发语言

商城网站开发计划 一、项目概述 本商城网站开发计划旨在创建一个功能齐全、用户友好的在线购物平台,为顾客提供商品浏览、搜索、购物车管理、订单跟踪、在线支付等服务。商城将支持多种商品分类,包括但不限于电子产品、家居用品、服饰鞋帽等。 二、开…

在小公司可以做大模型吗?心得经验分享_第一份工作在小公司做大模型好吗

导读 继ChatGPT发布以来,各种大模型相继问世。近日Sora也突然走入大众的视野。那么做模型是否只有OpenAI这种巨头公司才能做呢,答案是否定的。在小公司做大模型,是可以的。本文作者结合切身经历,回答了如何在小公司做大模型。 在…

【Linux】进程信号2——阻塞信号,捕捉信号

1.阻塞信号 1.1. 信号其他相关常见概念 在开始内容之前,先介绍一些信号的专业名词: 实际执行信号的处理动作称为信号递达(Delivery)信号从产生到递达之间的状态,称为信号未决(Pending)&#…

Log4j2异步打印可变对象的问题

现象 应用代码如下: Test test new Test();test.setA(1);test.setB("1");log.info("before modification: {} \t ",test);test.setA(2);test.setB("2");log.info("after modification: {} \t ",test);问题应用的日志控制…

组装盒示范程序

代码; #include <gtk-2.0/gtk/gtk.h> #include <glib-2.0/glib.h> #include <stdio.h>int main(int argc, char *argv[]) {gtk_init(&argc, &argv);GtkWidget *window;window gtk_window_new(GTK_WINDOW_TOPLEVEL);gtk_window_set_title(GTK_WINDO…

用进程和线程完成TCP进行通信操作及广播和组播的通信

进程 代码 #include <stdio.h>#include <sys/types.h>#include <sys/socket.h>#include <netinet/in.h>#include <arpa/inet.h>#include <string.h>#include <unistd.h>#include <stdlib.h>#include <signal.h>#includ…

1958springboot VUE宿舍管理系统开发mysql数据库web结构java编程计算机网页源码maven项目

一、源码特点 springboot VUE宿舍管理系统是一套完善的完整信息管理类型系统&#xff0c;结合springboot框架和VUE完成本系统&#xff0c;对理解JSP java编程开发语言有帮助系统采用springboot框架&#xff08;MVC模式开发&#xff09; &#xff0c;系统具有完整的源代码和数…

PyTorch实战:模型训练中的特征图可视化技巧

1.特征图可视化&#xff0c;这种方法是最简单&#xff0c;输入一张照片&#xff0c;然后把网络中间某层的输出的特征图按通道作为图片进行可视化展示即可。 2.特征图可视化代码如下&#xff1a; def featuremap_visual(feature, out_dirNone, # 特征图保存路径文件save_feat…

O2OA的数据库数据库配置-使用不同用户访问Oracle时报错-表或视图不存在

在使用Oracle数据库时&#xff0c;多个O2OA服务器同一个Oracle实例中使用不同的用户启动时&#xff0c;可能会遇到数据库访问的错误。本篇阐述此类问题以及解决方案。 一、先决条件&#xff1a; 1、O2OA已经下载并且解压到指定的目录&#xff1b; 2、Oracle数据库已经完成安…

90 Realistic Arctic Environment Textures snow(90+种逼真的北极环境纹理--雪、冰及更多)

一组90多个逼真的雪、冰、雪地岩石和其他被雪覆盖的地面纹理,供在雪地环境中使用。每个纹理都是可贴的/无缝的,并且完全兼容各种不同的场景--标准的Unity地形、Unity标准着色器、URP、HDRP等等都兼容。 所有的纹理都是4096x4096,并包括一个HDRP掩码,以完全支持HDRP。 特点。…

X86+FPGA, NXP+FPGA:工控稳“固”之选 赋能CPCI/VPX智能轨交新变革

工业IPC在目前大时代背景下面临机遇,但挑战同样也不少。在轨道交通领域&#xff0c;工控机必须具备高可靠性和稳定性&#xff0c;能够在复杂且严苛的工作环境中长时间无故障运行&#xff1b;需要满足严格的实时性和响应性能要求&#xff0c;确保能够迅速准确地处理传感器信号和…

椭圆的几何要素

椭圆的几何要素 flyfish 椭圆的方程为 x 2 a 2 y 2 b 2 1 \frac{x^2}{a^2} \frac{y^2}{b^2} 1 a2x2​b2y2​1。 长半轴 a a a&#xff08;绿色虚线&#xff09;和短半轴 b b b&#xff08;紫色虚线&#xff09;。 焦点 F 1 ( − c , 0 ) F1(-c, 0) F1(−c,0)&#…

暴雨讲堂|通往AGI的必由之路—AI agent是什么?

在三月份英伟达的新品发布会上&#xff0c;黄仁勋反复提及一个词汇— Generalist Embodied Agent&#xff0c;意为“通用具身智能体”&#xff0c;给观众留下了深刻的印象。其实具身智能指的是不同形态的拥有主动感知交互能力的机器人。其实&#xff0c;业界对它还有一个更为熟…

python如何安装ta-lib依赖包

在使用pip install ta-lib安装ta-lib库的时候,出现了以下错误信息。本文记录安装成功的整个过程。 解决办法 1、创建虚拟环境 我们使用conda进行创建一个python=3.8版本的虚拟环境 conda create -n python38 python==3.8激活创建好虚拟环境 conda activate python382、安装步…

媒体访谈 | 广告变现痛点有新解,俄罗斯市场成大热门?

今年一季度&#xff0c;中国自主研发游戏在海外市场实际销售收入达到了40.75亿美元&#xff0c;环比和同比均实现了超过5%的增长&#xff0c;出海&#xff0c;仍是游戏产品近些年来最主要的发展模式之一。 当今的市场环境正经历一系列深刻变革&#xff0c;移动游戏广告市场呈现…

IDEA集成Docker实现快捷部署

本文已收录于专栏 《运维》 目录 背景介绍优势特点操作步骤一、修改Docker配置二、配置Docker插件三、编写Maven插件四、构建Docker镜像五、创建Docker容器 总结提升 背景介绍 在我们手动通过Docker部署项目的时候&#xff0c;都是通过把打包好的jar包放到服务器上并且在服务器…

git提交遇见的<<<<<<<< HEAD无法运行程序问题

在项目文件目录下打开git bash Here 在命令行中输入 git reset --hard HEAD~1 进行复原 git reset --hard HEAD~1 即可

【Java】线程池技术(三)ThreadPoolExecutor 状态与运行源码解析

ThreadPoolExecutor 状态 ThreadPoolExecutor 继承了 AbstractExecutorService&#xff0c;并实现了 ExecutorService 接口&#xff0c;用于管理线程。内部使用了原子整型 AtomicInteger ctl 来表示线程池状态和 Worker 数量。前 3 位表示线程池状态&#xff0c;后 29 位表示 …

python代码生成可执行文件

以下面转换图片尺寸的代码resize_images.py为例&#xff1a; 代码功能&#xff1a;原始图片放在img文件夹中&#xff0c;然后运行代码可以转换成指定分辨率&#xff0c;保存在同一目录下的新生成的文件夹中 import os import sys import cv2 from datetime import datetime f…