基于STM32和人工智能的智能家居监控系统

目录

  1. 引言
  2. 环境准备
  3. 智能家居监控系统基础
  4. 代码实现:实现智能家居监控系统
    • 4.1 数据采集模块
    • 4.2 数据处理与分析
    • 4.3 控制系统
    • 4.4 用户界面与数据可视化
  5. 应用场景:智能家居管理与优化
  6. 问题解决方案与优化
  7. 收尾与总结

1. 引言

随着智能家居技术的快速发展,智能家居监控系统在提升家居舒适度、安全性和能源效率方面起到了重要作用。通过人工智能算法对家居环境数据进行分析,可以实现更智能的家居管理。本文将详细介绍如何在STM32嵌入式系统中结合人工智能技术实现一个智能家居监控系统,包括环境准备、系统架构、代码实现、应用场景及问题解决方案和优化方法。

2. 环境准备

硬件准备

  • 开发板:STM32F407 Discovery Kit
  • 调试器:ST-LINK V2或板载调试器
  • 温湿度传感器:如DHT22
  • 空气质量传感器:如MQ-135
  • 光照传感器:如BH1750
  • 摄像头模块:用于安防监控
  • 电器控制模块:如继电器模块
  • 显示屏:如TFT LCD显示屏
  • 按键或旋钮:用于用户输入和设置
  • 电源:12V或24V电源适配器

软件准备

  • 集成开发环境(IDE):STM32CubeIDE或Keil MDK
  • 调试工具:STM32 ST-LINK Utility或GDB
  • 库和中间件:STM32 HAL库、TensorFlow Lite
  • 人工智能模型:用于数据分析和预测

安装步骤

  1. 下载并安装 STM32CubeMX
  2. 下载并安装 STM32CubeIDE
  3. 配置STM32CubeMX项目并生成STM32CubeIDE项目
  4. 安装必要的库和驱动程序
  5. 下载并集成 TensorFlow Lite 库

3. 智能家居监控系统基础

控制系统架构

智能家居监控系统由以下部分组成:

  • 数据采集模块:用于采集家居环境数据(温湿度、空气质量、光照强度、视频监控等)
  • 数据处理与分析:使用人工智能算法对采集的数据进行分析和预测
  • 控制系统:根据分析结果控制家电设备、安防系统等
  • 显示系统:用于显示环境参数和系统状态
  • 用户输入系统:通过按键或旋钮进行设置和调整

功能描述

通过传感器和摄像头采集家居环境数据,并使用人工智能算法进行分析和预测,自动控制家电设备和安防系统,实现智能化的家居管理。用户可以通过按键或旋钮进行设置,并通过显示屏查看当前状态和系统建议。

4. 代码实现:实现智能家居监控系统

4.1 数据采集模块

配置DHT22温湿度传感器
使用STM32CubeMX配置GPIO接口:

打开STM32CubeMX,选择您的STM32开发板型号。
在图形化界面中,找到需要配置的GPIO引脚,设置为输入模式。
生成代码并导入到STM32CubeIDE中。

代码实现

#include "stm32f4xx_hal.h"
#include "dht22.h"void DHT22_Init(void) {// 初始化DHT22传感器
}void DHT22_Read_Data(float* temperature, float* humidity) {// 读取DHT22传感器的温度和湿度数据
}int main(void) {HAL_Init();SystemClock_Config();DHT22_Init();float temperature, humidity;while (1) {DHT22_Read_Data(&temperature, &humidity);HAL_Delay(2000);}
}

配置MQ-135空气质量传感器
使用STM32CubeMX配置ADC接口:

打开STM32CubeMX,选择您的STM32开发板型号。
在图形化界面中,找到需要配置的ADC引脚,设置为输入模式。
生成代码并导入到STM32CubeIDE中。

代码实现

#include "stm32f4xx_hal.h"ADC_HandleTypeDef hadc1;void ADC_Init(void) {__HAL_RCC_ADC1_CLK_ENABLE();ADC_ChannelConfTypeDef sConfig = {0};hadc1.Instance = ADC1;hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4;hadc1.Init.Resolution = ADC_RESOLUTION_12B;hadc1.Init.ScanConvMode = DISABLE;hadc1.Init.ContinuousConvMode = ENABLE;hadc1.Init.DiscontinuousConvMode = DISABLE;hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;hadc1.Init.NbrOfConversion = 1;hadc1.Init.DMAContinuousRequests = DISABLE;hadc1.Init.EOCSelection = ADC_EOC_SINGLE_CONV;HAL_ADC_Init(&hadc1);sConfig.Channel = ADC_CHANNEL_0;sConfig.Rank = 1;sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;HAL_ADC_ConfigChannel(&hadc1, &sConfig);
}uint32_t Read_Air_Quality(void) {HAL_ADC_Start(&hadc1);HAL_ADC_PollForConversion(&hadc1, HAL_MAX_DELAY);return HAL_ADC_GetValue(&hadc1);
}int main(void) {HAL_Init();SystemClock_Config();ADC_Init();uint32_t air_quality;while (1) {air_quality = Read_Air_Quality();HAL_Delay(1000);}
}

配置摄像头模块
使用STM32CubeMX配置SPI或I2C接口:

打开STM32CubeMX,选择您的STM32开发板型号。
在图形化界面中,找到需要配置的SPI或I2C引脚,设置为相应的通信模式。
生成代码并导入到STM32CubeIDE中。

代码实现

#include "stm32f4xx_hal.h"
#include "camera.h"void Camera_Init(void) {// 初始化摄像头模块
}void Camera_Capture_Image(uint8_t* image_buffer) {// 捕获图像数据
}int main(void) {HAL_Init();SystemClock_Config();Camera_Init();uint8_t image_buffer[IMAGE_SIZE];while (1) {Camera_Capture_Image(image_buffer);HAL_Delay(5000);  // 每5秒捕获一次图像}
}

4.2 数据处理与分析

集成TensorFlow Lite进行数据分析
使用STM32CubeMX配置必要的接口,确保嵌入式系统能够加载和运行TensorFlow Lite模型。

代码实现

#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/micro/micro_interpreter.h"
#include "tensorflow/lite/micro/micro_error_reporter.h"
#include "tensorflow/lite/micro/micro_mutable_op_resolver.h"
#include "tensorflow/lite/schema/schema_generated.h"
#include "tensorflow/lite/version.h"
#include "model_data.h"  // 人工智能模型数据namespace {tflite::MicroErrorReporter micro_error_reporter;tflite::MicroInterpreter* interpreter = nullptr;TfLiteTensor* input = nullptr;TfLiteTensor* output = nullptr;constexpr int kTensorArenaSize = 2 * 1024;uint8_t tensor_arena[kTensorArenaSize];
}void AI_Init(void) {tflite::InitializeTarget();static tflite::MicroMutableOpResolver<10> micro_op_resolver;micro_op_resolver.AddFullyConnected();micro_op_resolver.AddSoftmax();const tflite::Model* model = tflite::GetModel(model_data);if (model->version() != TFLITE_SCHEMA_VERSION) {TF_LITE_REPORT_ERROR(&micro_error_reporter,"Model provided is schema version %d not equal ""to supported version %d.",model->version(), TFLITE_SCHEMA_VERSION);return;}static tflite::MicroInterpreter static_interpreter(model, micro_op_resolver, tensor_arena, kTensorArenaSize,&micro_error_reporter);interpreter = &static_interpreter;interpreter->AllocateTensors();input = interpreter->input(0);output = interpreter->output(0);
}void AI_Run_Inference(float* input_data, float* output_data) {// 拷贝输入数据到模型输入张量for (int i = 0; i < input->dims->data[0]; ++i) {input->data.f[i] = input_data[i];}// 运行模型推理if (interpreter->Invoke() != kTfLiteOk) {TF_LITE_REPORT_ERROR(&micro_error_reporter, "Invoke failed.");return;}// 拷贝输出数据for (int i = 0; i < output->dims->data[0]; ++i) {output_data[i] = output->data.f[i];}
}int main(void) {HAL_Init();SystemClock_Config();AI_Init();float input_data[INPUT_SIZE];float output_data[OUTPUT_SIZE];while (1) {// 获取传感器数据,填充 input_data 数组// 运行AI推理AI_Run_Inference(input_data, output_data);// 根据模型输出数据执行相应的操作HAL_Delay(1000);}
}

4.3 控制系统

配置GPIO控制家电设备
使用STM32CubeMX配置GPIO:

打开STM32CubeMX,选择您的STM32开发板型号。
在图形化界面中,找到需要配置的GPIO引脚,设置为输出模式。
生成代码并导入到STM32CubeIDE中。

代码实现

#include "stm32f4xx_hal.h"#define FAN_PIN GPIO_PIN_0
#define HEATER_PIN GPIO_PIN_1
#define LIGHT_PIN GPIO_PIN_2
#define GPIO_PORT GPIOAvoid GPIO_Init(void) {__HAL_RCC_GPIOA_CLK_ENABLE();GPIO_InitTypeDef GPIO_InitStruct = {0};GPIO_InitStruct.Pin = FAN_PIN | HEATER_PIN | LIGHT_PIN;GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;GPIO_InitStruct.Pull = GPIO_NOPULL;GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;HAL_GPIO_Init(GPIO_PORT, &GPIO_InitStruct);
}void Control_Fan(uint8_t state) {HAL_GPIO_WritePin(GPIO_PORT, FAN_PIN, state ? GPIO_PIN_SET : GPIO_PIN_RESET);
}void Control_Heater(uint8_t state) {HAL_GPIO_WritePin(GPIO_PORT, HEATER_PIN, state ? GPIO_PIN_SET : GPIO_PIN_RESET);
}void Control_Light(uint8_t state) {HAL_GPIO_WritePin(GPIO_PORT, LIGHT_PIN, state ?
HAL_GPIO_WritePin(GPIO_PORT, LIGHT_PIN, state ? GPIO_PIN_SET : GPIO_PIN_RESET);
}int main(void) {HAL_Init();SystemClock_Config();GPIO_Init();AI_Init();float input_data[INPUT_SIZE];float output_data[OUTPUT_SIZE];while (1) {// 获取传感器数据,填充 input_data 数组// 运行AI推理AI_Run_Inference(input_data, output_data);// 根据AI输出控制家电设备uint8_t fan_state = output_data[0] > 0.5;uint8_t heater_state = output_data[1] > 0.5;uint8_t light_state = output_data[2] > 0.5;Control_Fan(fan_state);Control_Heater(heater_state);Control_Light(light_state);HAL_Delay(1000);}
}

4.4 用户界面与数据可视化

配置TFT LCD显示屏
使用STM32CubeMX配置SPI接口:

打开STM32CubeMX,选择您的STM32开发板型号。
在图形化界面中,找到需要配置的SPI引脚,设置为SPI模式。
生成代码并导入到STM32CubeIDE中。

代码实现

#include "stm32f4xx_hal.h"
#include "spi.h"
#include "lcd_tft.h"void Display_Init(void) {LCD_TFT_Init();
}void Display_Home_Data(float* output_data) {char buffer[32];sprintf(buffer, "Fan: %s", output_data[0] > 0.5 ? "ON" : "OFF");LCD_TFT_Print(buffer);sprintf(buffer, "Heater: %s", output_data[1] > 0.5 ? "ON" : "OFF");LCD_TFT_Print(buffer);sprintf(buffer, "Light: %s", output_data[2] > 0.5 ? "ON" : "OFF");LCD_TFT_Print(buffer);
}int main(void) {HAL_Init();SystemClock_Config();GPIO_Init();DHT22_Init();ADC_Init();AI_Init();Display_Init();float input_data[INPUT_SIZE];float output_data[OUTPUT_SIZE];while (1) {// 读取传感器数据并填充 input_data 数组// 运行AI推理AI_Run_Inference(input_data, output_data);// 显示家居环境数据和AI结果Display_Home_Data(output_data);// 根据AI结果控制家电设备uint8_t fan_state = output_data[0] > 0.5;uint8_t heater_state = output_data[1] > 0.5;uint8_t light_state = output_data[2] > 0.5;Control_Fan(fan_state);Control_Heater(heater_state);Control_Light(light_state);HAL_Delay(1000);}
}

5. 应用场景:智能家居管理与优化

家庭环境监控

智能家居监控系统可以应用于家庭环境监控,通过实时监控和控制家居环境参数,提高生活质量和舒适度。

安防监控

通过集成摄像头和人工智能算法,系统可以实现家庭安防监控,识别异常行为或入侵,提供安全预警和记录功能。

智能节能

通过智能控制家电设备,实现节能管理,减少能源消耗,提高能源利用效率。

⬇帮大家整理了单片机的资料

包括stm32的项目合集【源码+开发文档】

点击下方蓝字即可领取,感谢支持!⬇

点击领取更多嵌入式详细资料

问题讨论,stm32的资料领取可以私信!

 

6. 问题解决方案与优化

常见问题及解决方案

  1. 传感器数据不准确:确保传感器与STM32的连接稳定,定期校准传感器以获取准确数据。
  2. 设备响应延迟:优化控制逻辑和硬件配置,减少设备响应时间,提高系统反应速度。
  3. 显示屏显示异常:检查SPI通信线路,确保显示屏与MCU之间的通信正常,避免由于线路问题导致的显示异常。

优化建议

  1. 数据集成与分析:集成更多类型的传感器数据,使用大数据分析和机器学习技术进行环境预测和趋势分析。
  2. 用户交互优化:改进用户界面设计,提供更直观的数据展示和更简洁的操作界面,增强用户体验。
  3. 智能化控制提升:增加智能决策支持系统,根据历史数据和实时数据自动调整控制策略,实现更高效的家居管理。

7. 收尾与总结

本教程详细介绍了如何在STM32嵌入式系统中结合人工智能技术实现智能家居监控系统,从硬件选择、软件实现到系统配置和应用场景都进行了全面的阐述。通过合理的技术选择和系统设计,可以构建一个高效且功能强大的智能家居监控系统。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/852507.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

DockerCompose+Jenkins+Pipeline流水线打包Vue项目(解压安装配置Node)入门

场景 DockerComposeJenkinsPipeline流水线打包SpringBoot项目(解压安装配置JDK、Maven等)入门&#xff1a; DockerComposeJenkinsPipeline流水线打包SpringBoot项目(解压安装配置JDK、Maven等)入门-CSDN博客 以上使用流水线配置和打包springboot后台项目&#xff0c;如果要使…

开诊所的10个常见问题,欣九康为您一一解答!

开设一家诊所需要具备哪些条件&#xff1f;规定需要各种证件&#xff0c;而且医生执业满五年&#xff0c;备个案就行。听起来很简单是不是&#xff1f;但是&#xff0c;到了真正开始筹备诊所的时候&#xff0c;却是千头万绪&#xff0c;不知从何下手&#xff0c;到处都是问题&a…

C语言 | Leetcode C语言题解之第148题排序链表

题目&#xff1a; 题解&#xff1a; struct ListNode* merge(struct ListNode* head1, struct ListNode* head2) {struct ListNode* dummyHead malloc(sizeof(struct ListNode));dummyHead->val 0;struct ListNode *temp dummyHead, *temp1 head1, *temp2 head2;while…

推流工具OBS的下载使用

一、下载安装 OBS&#xff0c;windows版本官网下载地址 二、推流步骤 安装好之后&#xff0c;打开软件 1、右下角&#xff0c;打开设置 2、输入推流地址&#xff0c;一般为rtmp格式开头的推流地址 输入完成后&#xff0c;应用并确定关闭窗口 3、“来源”里面新建媒体源、新…

《别让“想太多”挡了你的骑行路,对比一下更丝滑》

在探索骑行的世界时&#xff0c;我们往往会被一些先入为主的想法所束缚。本文将带你对比骑行与其他运动和生活方式&#xff0c;揭示那些阻碍你爱上骑行的认知误区。 一、年龄不是界限&#xff1a;骑行与跑步的比较与跑步相比&#xff0c;骑行同样适合所有年龄段&#xff0c;但它…

从“数据孤岛”、Data Fabric(数据编织)谈逻辑数据平台

提到逻辑数据平台&#xff0c;其核心在于“逻辑”&#xff0c;与之相对的便是“物理”。在过去&#xff0c;为了更好地利用和管理数据&#xff0c;我们通常会选择搭建数据仓库和数据湖&#xff0c;将所有数据物理集中起来。但随着数据量、用数需求和用数人员的持续激增&#xf…

单链表经典算法题 1

前言 学习了单链表&#xff0c;我们就做一些题来巩固一下。还有就是解题方法不唯一&#xff0c;我就只讲述为自己的方法。 目录 前言 1.移除链表元素 思路 代码 2.反转链表 思路 代码 3.链表的中间节点 思路 代码 总结 1.移除链表元素 思路 我们创建一个新的表…

长连接的钟表程序

实验要求 实现1个钟表程序&#xff08;服务&#xff09;&#xff0c;多个用户可以从该程序获得时间并在本地显示&#xff0c;用户也可以修改时间。 &#xff08;1&#xff09;用户程序可以在计算机上运行&#xff0c;也可以在手机上运行&#xff1b; &#xff08;2&#xff…

【Android】Android系统性学习——Android系统架构

前言 部分内容参考《Android进阶解密》 – 刘望舒 1. Android版本 官方链接&#xff1a;https://developer.android.com/studio/releases/platforms 里面有各个版本的官方文档&#xff0c;有些新功能的用法在这里面。 现在做安卓11&#xff0c;有时候需要向下兼容 2. AOSP …

【Python】在运行中使用warnings.filterwarnings,可以忽略测试中遇到的问题

在 Python 中&#xff0c;warnings 是一个内置模块&#xff0c;用于发出有关程序执行的警告信息&#xff0c;这些警告信息通常是关于程序行为的潜在问题。 不过&#xff0c;这些问题通常不是致命的错误&#xff0c;只不过是展示我们代码中潜在的问题&#xff0c;或不推荐的做法…

软件架构搞好了,还用担心代码可读性差?

目录 一、架构的概念及由来 二、小系统也需要架构思想 三、实现架构的思路 一、架构的概念及由来 嵌入式软件架构是指在嵌入式系统中用于组织和管理软件组件的结构和设计。嵌入式软件架构的出现是为了解决嵌入式系统中软件复杂度和系统要求不断增加的挑战。以下是嵌入式软件架…

【STM32进阶笔记】GPIO端口

前段时间由于其他原因&#xff0c;专栏暂停更新了较长一段时间&#xff0c;现在恢复更新&#xff0c;争取继续为大家创造有价值的内容&#xff0c;期待大家的订阅关注&#xff0c;欢迎互相学习交流。 在STM32速成笔记系列专栏中其实已经对GPIO的一些必要知识进行了介绍&#xf…

GPT4O给Qwen2生成的高考作文打分56分,从“小白”进阶技术大神的开发者基于国产GPU推理模型效果可还行?

OpenI启智社区上线的【芯动开源】首场活动-天数智芯挑战专场即将迎来最后一周的冲刺阶段&#xff0c;自2024年5月27日上线以来&#xff0c;这期间&#xff0c;我们见证了天数智芯通用GPU加速卡在适配AI模型方面的无限可能与开发者们开源精神的璀璨光辉。 在短短的两周时间里&a…

代码随想录算法训练营第二十三天|669. 修剪二叉搜索树、 108.将有序数组转换为二叉搜索树、 538.把二叉搜索树转换为累加树

669. 修剪二叉搜索树 题目链接&#xff1a;669. 修剪二叉搜索树 文档讲解&#xff1a;代码随想录 状态&#xff1a;还可以 思路&#xff1a; 如果节点的值在[low, high]之间&#xff0c;则递归修剪它的左子树和右子树。 节点值小于low&#xff1a;如果节点的值小于low&#xff…

智慧工厂自动装车解决方案:H13三维轮廓扫描激光雷达

激光雷达在智慧工厂自动装车的应用场景在智慧工厂的自动装车场景中&#xff0c;激光雷达的应用显得尤为关键。这种技术以其精确的测量和定位能力&#xff0c;助力自动化装车的每一个环节&#xff0c;大大提高了装车的效率和准确性。 首先&#xff0c;激光雷达在车辆定位方面发挥…

[next.js] svgr/webpack

nextjs如何配置svg文件&#xff0c;使其像react组件一样导入? 当前next.js 开发环境我使用了--turbo 来开启turbopack加速文件构建&#xff0c;所以之前的一些webpack loader之类的无法正常工作。通过搜索发现一般都是使用svgr/webpack来处理svg&#xff0c;打开svgr官网发现…

vscode 连接 GitHub

文章目录 连接 GitHub一、通过 SSH 连接 github二、通过 HTTPS 连接 github 连接 GitHub 在 vscode 中首次使用 git push 命令时会要求输入 github 账户的 username 和 password&#xff0c;这种基本身份验证在 2021.8.13 以前还是可以的&#xff0c;之后的话&#xff0c;就会…

Luma AI 推出梦幻机:据说吊打Sora和快手可灵(KLING)|TodayAI

近日&#xff0c;美国初创公司 Luma AI 宣布推出其最新的文本生成视频工具——梦幻机&#xff08;Dream Machine&#xff09;。这一消息发布的时间正好在中国科技公司快手推出其文本生成视频模型可灵&#xff08;KLING&#xff09;几天之后&#xff0c;标志着视频生成领域的又一…

Android Compose 十一:常用组件列表 compose自己个的 下拉刷新

列表下拉刷新 material3 还没有下拉刷新功能material:1.3.0 之后 swiperefresh 被弃用 被PullRefresh替代使用PullRefresh 需要添加依赖 implementation ‘androidx.compose.material:material:1.6.8’ 先上代码 var refreshing by remember {mutableStateOf(false)} val…

线性代数|机器学习-P12Ax=b条件下x最小值问题

文章目录 1. Axb下的最值问题-图形转换2. Gram-Schmidt 标准形3. 迭代法-Krylov子空间法 1. Axb下的最值问题-图形转换 假设我们有一个直线方程如下&#xff1a; 3 x 1 4 x 2 1 \begin{equation} 3x_14x_21 \end{equation} 3x1​4x2​1​​ 在二维平面上&#xff0c;各个范…