【机器学习】机器学习在深度学习领域中的作用:半监督学习的视角

👀时空之门👀

  • 🔍引言
  • 🎈半监督学习概述
  • 🚝机器学习在深度学习领域中的作用
    • ☘特征提取与表示学习
    • 🍀复杂任务建模
    • ❀结合半监督学习提升性能
  • 🚀半监督学习在深度学习中的应用场景
    • 📕图像识别与计算机视觉
    • 🐱自然语言处理
  • 💖半监督学习的未来与发展


在这里插入图片描述

🔍引言

随着信息技术的飞速发展,机器学习已经成为人工智能领域中的关键技术之一。在机器学习的众多分支中,深度学习以其强大的特征表示能力和高效的计算模型,成为解决复杂问题的有力工具。然而,在实际应用中,标注数据的获取往往成本高昂且耗时,这限制了深度学习模型的训练和应用。因此,如何在有限标注数据的情况下提高深度学习模型的性能,成为了一个重要的研究问题。半监督学习作为一种介于监督学习和非监督学习之间的方法,为解决这一问题提供了新的思路。本文将从半监督学习的视角出发,探讨机器学习在深度学习领域中的作用,分析其基本原理、应用场景以及面临的挑战,并通过代码示例展示半监督学习的实际应用。

🎈半监督学习概述

半监督学习是一种结合了监督学习和非监督学习的机器学习技术,旨在利用少量标注数据和大量未标注数据来提高学习器的性能。在实际应用中,标注数据的获取往往需要人工参与,成本高昂且耗时。而大量的未标注数据则相对容易获取,但难以直接用于监督学习。半监督学习通过利用未标注数据中的信息,辅助标注数据进行模型训练,从而提高了模型的泛化能力和准确性。

半监督学习的方法主要包括自训练(Self-training)、生成模型(Generative Models)、图模型(Graph-based Models)和协同训练(Co-training)等。这些方法各有特点,适用于不同的应用场景。其中,自训练方法通过迭代地利用模型对未标注数据进行预测和标注,逐步扩大标注数据集;生成模型方法则通过假设数据服从某种分布,利用未标注数据估计分布参数,进而对标注数据进行建模;图模型方法则利用数据之间的相似性关系构建图结构,通过图上的信息传播来辅助标注数据进行模型训练;协同训练方法则通过训练多个分类器,利用分类器之间的差异性来辅助标注数据进行模型训练。

在这里插入图片描述

🚝机器学习在深度学习领域中的作用

☘特征提取与表示学习

深度学习以其强大的特征提取和表示学习能力,在机器学习领域发挥着重要作用。在半监督学习中,深度学习模型同样可以利用其层次化的特征提取方式,从标注数据和未标注数据中提取出更加丰富的特征表示。这些特征表示不仅可以用于提高模型的分类性能,还可以用于其他相关任务,如聚类、降维等。

🍀复杂任务建模

深度学习模型具有强大的建模能力,可以处理更加复杂的数据和任务。在半监督学习中,深度学习模型可以利用未标注数据中的信息,辅助标注数据进行模型训练,从而实现对复杂任务的建模。例如,在图像识别领域,深度学习模型可以通过卷积神经网络(CNN)自动学习到图像中的局部特征和空间结构信息;在自然语言处理领域,深度学习模型可以通过循环神经网络(RNN)或Transformer等结构学习到文本中的序列依赖关系和语义信息。这些复杂的任务建模能力使得深度学习在各个领域都取得了显著的成果。

❀结合半监督学习提升性能

在半监督学习中,深度学习模型可以通过以下方式提升性能:

  • 利用未标注数据扩大训练集:深度学习模型通常需要大量的标注数据进行训练。然而,在实际应用中,标注数据的获取往往成本高昂且耗时。半监督学习可以通过利用未标注数据来扩大训练集,从而提高模型的泛化能力和准确性。例如,可以使用自训练方法将未标注数据作为模型的输入,利用模型的预测结果作为标注数据来扩大训练集。

  • 利用未标注数据辅助标注数据进行训练:在半监督学习中,标注数据和未标注数据往往具有相似的分布。因此,可以利用未标注数据中的信息来辅助标注数据进行模型训练。例如,可以使用生成模型方法假设数据服从某种分布,利用未标注数据估计分布参数,进而对标注数据进行建模;或者使用图模型方法利用数据之间的相似性关系构建图结构,通过图上的信息传播来辅助标注数据进行模型训练。

  • 结合多种半监督学习方法:不同的半监督学习方法各有特点,适用于不同的应用场景。因此,可以结合多种半监督学习方法来提高深度学习模型的性能。例如,可以同时使用自训练方法和协同训练方法,通过迭代地利用模型对未标注数据进行预测和标注,以及利用多个分类器之间的差异性来辅助标注数据进行模型训练。

在这里插入图片描述

🚀半监督学习在深度学习中的应用场景

📕图像识别与计算机视觉

在图像识别领域,半监督学习可以通过利用未标注图像中的信息来辅助标注图像进行模型训练。例如,可以使用自训练方法将未标注图像作为模型的输入,利用模型的预测结果作为标注数据来扩大训练集;或者使用图模型方法利用图像之间的相似性关系构建图结构,通过图上的信息传播来辅助标注图像进行模型训练。这些方法可以提高深度学习模型在图像识别任务中的性能。

图像识别与计算机视觉:自训练方法

在图像识别任务中,我们可以使用自训练方法(Self-training)来利用未标注的图像数据辅助标注数据进行深度学习模型的训练。自训练方法的基本思想是先使用有限的标注数据训练一个初始模型,然后用这个模型对未标注数据进行预测,将预测结果置信度较高的样本加入到训练集中,再重新训练模型。这样迭代进行,逐步扩大训练集,提高模型的性能。

以下是一个使用Keras实现的自训练方法代码示例:

import keras  
from keras.datasets import cifar10  
from keras.models import Sequential  
from keras.layers import Dense, Dropout, Flatten  
from keras.layers import Conv2D, MaxPooling2D  
from keras.utils import to_categorical  
from sklearn.model_selection import train_test_split  # 加载CIFAR-10数据集  
(x_train_full, y_train_full), (x_test, y_test) = cifar10.load_data()  # 假设我们只有少量标注数据  
n_labeled = 1000  
x_train, y_train = x_train_full[:n_labeled], y_train_full[:n_labeled]  
y_train = to_categorical(y_train, 10)  # 剩余数据作为未标注数据  
x_unlabeled = x_train_full[n_labeled:]  # 初始模型  
model = Sequential()  
model.add(Conv2D(32, (3, 3), activation='relu', padding='same', input_shape=(32, 32, 3)))  
model.add(MaxPooling2D(pool_size=(2, 2)))  
model.add(Conv2D(64, (3, 3), activation='relu', padding='same'))  
model.add(MaxPooling2D(pool_size=(2, 2)))  
model.add(Flatten())  
model.add(Dense(512, activation='relu'))  
model.add(Dropout(0.5))  
model.add(Dense(10, activation='softmax'))  # 编译模型  
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])  # 初始训练  
model.fit(x_train, y_train, epochs=10, batch_size=64)  # 自训练迭代  
n_iterations = 5  
for iteration in range(n_iterations):  # 使用当前模型对未标注数据进行预测  predictions = model.predict(x_unlabeled)  # 选择置信度较高的样本(例如,选择预测概率最高的类别概率大于某个阈值的样本)  # 这里简单起见,我们假设选择预测概率最高的前100个样本  confidence_scores = predictions.max(axis=1)  top_indices = confidence_scores.argsort()[-100:][::-1]  x_new_labeled = x_unlabeled[top_indices]  y_new_labeled = predictions[top_indices].argmax(axis=1)  y_new_labeled = to_categorical(y_new_labeled, 10)  # 扩大训练集  x_train = np.concatenate((x_train, x_new_labeled), axis=0)  y_train = np.concatenate((y_train, y_new_labeled), axis=0)  # 重新训练模型  model.fit(x_train, y_train, epochs=10, batch_size=64)  # 最终模型在测试集上的评估  
loss, accuracy = model.evaluate(x_test, to_categorical(y_test, 10))  
print(f'Test loss: {loss}, Test accuracy: {accuracy}')

注意:上述代码示例为了简化,直接使用了CIFAR-10数据集的一部分作为未标注数据,实际应用中可能需要根据具体情况来获取未标注数据。

🐱自然语言处理

在自然语言处理领域,半监督学习同样具有广泛的应用。例如,在文本分类任务中,可以使用协同训练方法训练多个分类器,利用分类器之间的差异性来辅助标注文本进行模型训练;或者在命名实体识别任务中,可以使用生成模型方法假设文本数据

自然语言处理:协同训练方法

在自然语言处理任务中,协同训练方法(Co-training)可以利用多个不同的特征视图(例如,词语、词性、句法结构等)来训练多个分类器,并通过这些分类器之间的差异性来辅助标注数据进行模型训练。以下是一个简化的协同训练方法代码示例:

from sklearn.datasets import fetch_20newsgroups  
from sklearn.model_selection import train_test_split  
from sklearn.feature_extraction.text import Tfidf

在这里插入图片描述

💖半监督学习的未来与发展

  • 理论与算法的创新:随着研究的深入,半监督学习的理论与算法将不断得到创新和完善。这将进一步提高半监督学习的性能和应用范围。
  • 应用领域的拓展:随着技术的不断进步,半监督学习将在更多领域得到应用。例如,在医疗健康、金融、自动驾驶等领域,半监督学习将发挥重要作用。
  • 与其他技术的融合:半监督学习将与其他技术如强化学习、迁移学习等进行融合,形成更加先进的人工智能技术。这将进一步推动人工智能技术的发展和应用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/847488.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

反弹shell检测的一些思路

前言 反弹shell是攻击者常用的手段之一,通过反弹Shell,攻击者可以绕过防火墙,获取目标系统的shell访问权限,进行后续的恶意操作。因此,及时检测并阻止反弹Shell行为对于安全防护来说非常重要。本文通过介绍反弹shell的…

Baidu Comate帮开发者“代码搬砖”,2天搞定原先3周工作量

日常项目基础工作耗费大量时间、紧急任务一连“肝”几个大夜……对于一个计算机相关专业研究生来说,几乎是家常便饭。随着大模型能力赋能编码工具,被开发者们戏称的“代码搬砖”生活有了起色。 从去年开始,PPDE 飞桨开发者技术专家、澳门理工…

CV每日论文---2024.6.3

1、Video-MME: The First-Ever Comprehensive Evaluation Benchmark of Multi-modal LLMs in Video Analysis 中文标题:Video-MME:视频分析领域首个多模态法学硕士综合评估基准 简介:Video-MME 是一个全面评估多模态大语言模型(M…

MAX7219(模拟SPI)驱动灯环的简单应用

文章目录 一、MAX7219是什么?二、使用步骤1.硬件1.1 引脚说明1.2 应用电路1.2.1 驱动数码管1.2.2 驱动点阵 2.软件2.1 时序2.2 寄存器2.2.1 掉电寄存器2.2.2 译码模式寄存器2.2.3 亮度寄存器2.2.4 扫描寄存器2.2.5 显示测试寄存器 2.3 初始化2.4 控制左侧灯环特定位…

大厂起诉了,协商拿了2N,整理点经验心得给大家,关于离职时如何让自己利益最大化!...

离职时,如何让自己的利益最大化? 一位跟大厂仲裁,并通过协商拿到2n的网友分享了自己的经验心得,干货满满,下面是要点总结: 1.大部分裁员都是违法裁员,应该给2n,但公司不会承认&…

【代码随想录——贪心算法——二周目】

1.买卖股票的最佳时间② 思路:构建每两天之间的利润之差,如果是正数则一直累加即可。 体现出来场景是,如果理论一直为正,则说明我们需要一直持有股票。当出现负数时,代表我们应该在前一天卖出。当出现正数时我们应该在…

【耗时十个小时】程序员最趁手的SVM算法,学完你会哭着感谢努力的自己!

❤ 纯 干 货 ❤ 在这之前咱们已经接触了 各个算法的优缺点的总结,以及8个回归类算法、7个正则化算法的总结、5 个集成算法模型的全部总结! 感兴趣的可以翻到之前看看~ 咱们今天就大概一起学习一下关于SVM的方方面面。 线性支持向量机 非线性支持向量…

【全开源】Java同城服务同城信息同城任务发布平台小程序APP公众号源码

📢 连接你我,让任务触手可及 🌟 引言 在快节奏的现代生活中,我们时常需要寻找一些便捷的方式来处理生活中的琐事。同城任务发布平台系统应运而生,它为我们提供了一个高效、便捷的平台,让我们能够轻松发布…

ATA-2081高压放大器选型时注意事项是什么

高压放大器是一类特殊设计的放大器,用于放大高电压信号。在选择高压放大器时,需要考虑多个因素,以确保所选设备符合应用需求并能够提供稳定、可靠的性能。下面安泰电子官网将详细介绍在高压放大器选型过程中需要注意的关键事项。 一、电压范围…

【机器学习数据挖掘】基于自回归积分滑动平均模型的疫情分析报告 附完整python代码

资源地址:Python数据分析大作业 2000字 图文分析文档 疫情分析完整python代码 数据分析 数据来自法国疫情数据 数据预处理 建立模型 模型预测 资源地址:Python数据分析大作业 2000字 图文分析文档 疫情分析完整python代码 代码详解 完整代码文件 主…

luckysheet的使用

前言 公司新需求要一个在线的excel编辑器 一、luckysheet是什么? LuckySheet是一款基于Web的在线表格组件,一款纯前端类似excel的在线表格,功能强大、配置简单、完全开源结合Vue3可以实现数据的动态展示和编辑,为用户提供良好的…

2024年澳大利亚科学院新增院士名单和两位华人学者简介

近日,澳大利亚科学院公布了2024年新当选的24位院士名单,他们也是访问学者、博士后及联合培养博士们关注的目标导师。为此知识人网小编推出该文,以飨读者。 5月 23 日,2024年澳大利亚科学院(the Australian Academy of…

【企业开发】大屏的响应式处理

【企业开发】大屏的响应式处理 如图: 响应式工具封装 // 等比缩放方式屏幕适配 export function screenAdaptive(designWidth 1920, designHeight 1080) {const screenWidth document.documentElement.clientWidth || document.body.clientWidthconst screenHeig…

【数据结构】 排序算法总结,直接选择排序详解!

文章目录 1. 排序几个重点概念的理解2. 排序算法的分析🐧3.直接选择排序 1. 排序几个重点概念的理解 2. 排序算法的分析🐧 3.直接选择排序 🐧 begin 有可能就是 maxi ,所以交换的时候,要及时更新 maxi 🍎…

java同步

Java中的同步是指在多线程编程中,用来控制多个线程对共享资源的访问,以避免数据不一致的问题。Java提供了多种同步机制来确保线程安全。以下是Java同步的详细讲解: 1. synchronized关键字 synchronized关键字是Java中最常见的同步机制&…

计算机专业本科就业还是考研?考研有哪些热门方向?

考研并不是一个逃避就业的避难所,也不是一个简单的提升待遇的手段。考研是提升自我的途径,特别是对于那些对特定技术领域有浓厚兴趣并愿意深入研究的人来说 一个本科生能够认真学三年,那么他们所掌握的技能和知识不应该逊色于那些通过短期培…

Solidworks 提取模型中的零件,并组合成一个新的零件,放入特征库

对方发来一个STP文件,其中有模型的部分零件想为我所用。 Shift键鼠标左键 选取需要的零件 在选好零件上右键,选择“孤立” 左边找到部件,ctrl左键选中,选择“插入到新零件” 点 绿色 勾 就选择保存类型,完成 。 打开这…

Pyinstaller安装与使用

一、Pyinstaller简介 PyInstaller将Python应用程序冻结(打包)独立可执行文件中。它可以构建较小的可执行文件,它是完全多平台的,并且使用OS支持来加载动态库,从而确保完全兼容。 二、Pyinstaller安装 1、下载安装 首先安装“pip install pywin32” 其次“pip install …

设备维修管理系统

设备维修管理系统是一个集故障处理、巡检处理、设备管理、维修管理、系统管理以及手机客户端功能等六大功能于一体的信息化管理系统。该系统旨在实现设备管理的科学化、规范化和网络化,通过整合设备维修的各个环节和流程,提高设备维修的效率和质量&#…

网络安全||信息加解密技术以及密钥管理技术

一、信息加解密技术 对称加密 对称加密(又称为私人密钥加密/共享密钥加密):加密与解密使用同一密钥。特点:加密强度不高,但效率高;密钥分发困难。(大量明文为了保证加密效率一般使用对称加密&…