竞赛选题 基于深度学习的动物识别 - 卷积神经网络 机器视觉 图像识别

文章目录

  • 0 前言
  • 1 背景
  • 2 算法原理
    • 2.1 动物识别方法概况
    • 2.2 常用的网络模型
      • 2.2.1 B-CNN
      • 2.2.2 SSD
  • 3 SSD动物目标检测流程
  • 4 实现效果
  • 5 部分相关代码
    • 5.1 数据预处理
    • 5.2 构建卷积神经网络
    • 5.3 tensorflow计算图可视化
    • 5.4 网络模型训练
    • 5.5 对猫狗图像进行2分类
  • 6 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

基于深度学习的动物识别算法研究与实现

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 背景

目前,由于计算机能力和相关理论的发展获得了重大突破,基于深度学习的图像检测与识别技术已经广泛应用到人们的生产生活中。学长将深度学习的技术应用到野生动物图像识别中,优化了传统的识别方法,形成对野生动物图像更为准确的识别,为实现高效的野生动物图像识别提供了可能。不同于传统的野生动物识别,基于深度学习的野生动物识别技术可以捕获到野生动物更加细致的信息,有利于对野生动物进行更加准确的识别和研究。因此,对基于深度学习的野生动物识别和研究,可以更好的帮助社会管理者和政府全面有效的对野生动物进行保护和监管,这也正是保护和识别野生动物的关键,同时这对整个自然和社会的和谐发展具有极大的推动作用。

2 算法原理

2.1 动物识别方法概况

基于人工特征的野生动物识别方法主要通过人工对野生动物图像中具有辨识度的特征信息进行提取,并通过特征比对的方式就可以对野生动物所属的类别进行识别判断。

在深度学习技术普及之前,传统的数字图像处理技术与传统机器学习技术一直是研究的热点。传统的数字图像处理技术有模块分割、降低噪声点、边缘检测等方法。传统的机器学习技术有支持向量机、随机森林算法、BP
神经网络算法等。

深度学习技术是通过计算机模拟人类大脑的分层表达结构来建立网络模型,从原始数据集中对相关信息逐层提取。之后通过建立相应的神经网络对数据进行学习和分析,从而提高对目标预测和识别的准确率。如今,深度学习技术已经相对成熟,在对目标进行特征提取方面,卷积神经网络技术逐渐取代了传统的图像处理技术,并且在人类的生产生活中得到了广泛应用,这为研究野生动物更高效的识别方法奠定了基础。

2.2 常用的网络模型

图像识别是指对原始图像进行整体分析来达到预测原始图像所属类别的技术。计算机视觉领域中对图像识别技术进行了优化,与此同时,深度学习技术也对图像识别领域展开了突破。目前在图像识别领域中,研究人员开始使用深度学习的技术,并通过在实际应用中发现,基于深度学习的识别技术比传统的识别技术效果更好,且更具有优势。

2.2.1 B-CNN

双线性卷积神经网络(Bilinear
CNN,B-CNN)[34]是用两个卷积神经网络对图像进行特征提取,然后使用相应的函数将得到所有特征进行组合,组合的数据带入到分类器中进行分类。

在这里插入图片描述

2.2.2 SSD

经典的 SSD 模型是由经典网络和特征提取网络组成。

通过引入性能更好的特征提取网络对 SSD
目标检测模型进行了优化。Fu[49]等人提出了增加卷积神经网络层数和深度的方法用于提高识别准确率。通过实际应用之后,发现该方法识别准确率确实得到了一定程度的提高,但是模型结构却越来越复杂,同时对深层次的网络训练也越来越困难。

在这里插入图片描述

3 SSD动物目标检测流程

在这里插入图片描述

学长首先对 DenseNet-169 网络进行初始化,使用 DenseNet-169 网络作为目标检测的前置网络结构,并运用迁移学习的方法对
DenseNet-169 进行预训练,并将Snapshot Serengeti数据集下的权重值迁移到野生动物检测任务中,使数据集的训练速度得到提升。将
DenseNet-169 作为前置网络置于 SSD 中的目标提取检测网络之前,更换完前置网络的 SSD 目标检测网络依然完整。

4 实现效果

在这里插入图片描述
在这里插入图片描述

做一个GUI交互界面

在这里插入图片描述

5 部分相关代码

5.1 数据预处理

import cv2 as cvimport osimport numpy as npimport randomimport pickleimport timestart_time = time.time()data_dir = './data'batch_save_path = './batch_files'# 创建batch文件存储的文件夹os.makedirs(batch_save_path, exist_ok=True)# 图片统一大小:100 * 100# 训练集 20000:100个batch文件,每个文件200张图片# 验证集 5000:一个测试文件,测试时 50张 x 100 批次# 进入图片数据的目录,读取图片信息all_data_files = os.listdir(os.path.join(data_dir, 'train/'))# print(all_data_files)# 打算数据的顺序random.shuffle(all_data_files)all_train_files = all_data_files[:20000]all_test_files = all_data_files[20000:]train_data = []train_label = []train_filenames = []test_data = []test_label = []test_filenames = []# 训练集for each in all_train_files:img = cv.imread(os.path.join(data_dir,'train/',each),1)resized_img = cv.resize(img, (100,100))img_data = np.array(resized_img)train_data.append(img_data)if 'cat' in each:train_label.append(0)elif 'dog' in each:train_label.append(1)else:raise Exception('%s is wrong train file'%(each))train_filenames.append(each)# 测试集for each in all_test_files:img = cv.imread(os.path.join(data_dir,'train/',each), 1)resized_img = cv.resize(img, (100,100))img_data = np.array(resized_img)test_data.append(img_data)if 'cat' in each:test_label.append(0)elif 'dog' in each:test_label.append(1)else:raise Exception('%s is wrong test file'%(each))test_filenames.append(each)print(len(train_data), len(test_data))# 制作100个batch文件start = 0end = 200for num in range(1, 101):batch_data = train_data[start: end]batch_label = train_label[start: end]batch_filenames = train_filenames[start: end]batch_name = 'training batch {} of 15'.format(num)all_data = {'data':batch_data,'label':batch_label,'filenames':batch_filenames,'name':batch_name}with open(os.path.join(batch_save_path, 'train_batch_{}'.format(num)), 'wb') as f:pickle.dump(all_data, f)start += 200end += 200# 制作测试文件all_test_data = {'data':test_data,'label':test_label,'filenames':test_filenames,'name':'test batch 1 of 1'}with open(os.path.join(batch_save_path, 'test_batch'), 'wb') as f:pickle.dump(all_test_data, f)end_time = time.time()print('制作结束, 用时{}秒'.format(end_time - start_time))

5.2 构建卷积神经网络

cnn卷积神经网络的编写如下,编写卷积层、池化层和全连接层的代码

conv1_1 = tf.layers.conv2d(x, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_1')conv1_2 = tf.layers.conv2d(conv1_1, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_2')pool1 = tf.layers.max_pooling2d(conv1_2, (2, 2), (2, 2), name='pool1')conv2_1 = tf.layers.conv2d(pool1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_1')conv2_2 = tf.layers.conv2d(conv2_1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_2')pool2 = tf.layers.max_pooling2d(conv2_2, (2, 2), (2, 2), name='pool2')conv3_1 = tf.layers.conv2d(pool2, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_1')conv3_2 = tf.layers.conv2d(conv3_1, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_2')pool3 = tf.layers.max_pooling2d(conv3_2, (2, 2), (2, 2), name='pool3')conv4_1 = tf.layers.conv2d(pool3, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_1')conv4_2 = tf.layers.conv2d(conv4_1, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_2')pool4 = tf.layers.max_pooling2d(conv4_2, (2, 2), (2, 2), name='pool4')flatten = tf.layers.flatten(pool4)fc1 = tf.layers.dense(flatten, 512, tf.nn.relu)fc1_dropout = tf.nn.dropout(fc1, keep_prob=keep_prob)fc2 = tf.layers.dense(fc1, 256, tf.nn.relu)fc2_dropout = tf.nn.dropout(fc2, keep_prob=keep_prob)fc3 = tf.layers.dense(fc2, 2, None)

5.3 tensorflow计算图可视化

self.x = tf.placeholder(tf.float32, [None, IMAGE_SIZE, IMAGE_SIZE, 3], 'input_data')self.y = tf.placeholder(tf.int64, [None], 'output_data')self.keep_prob = tf.placeholder(tf.float32)# 图片输入网络中fc = self.conv_net(self.x, self.keep_prob)self.loss = tf.losses.sparse_softmax_cross_entropy(labels=self.y, logits=fc)self.y_ = tf.nn.softmax(fc) # 计算每一类的概率self.predict = tf.argmax(fc, 1)self.acc = tf.reduce_mean(tf.cast(tf.equal(self.predict, self.y), tf.float32))self.train_op = tf.train.AdamOptimizer(LEARNING_RATE).minimize(self.loss)self.saver = tf.train.Saver(max_to_keep=1)

最后的saver是要将训练好的模型保存到本地。

5.4 网络模型训练

然后编写训练部分的代码,训练步骤为1万步

acc_list = []with tf.Session() as sess:sess.run(tf.global_variables_initializer())for i in range(TRAIN_STEP):train_data, train_label, _ = self.batch_train_data.next_batch(TRAIN_SIZE)eval_ops = [self.loss, self.acc, self.train_op]eval_ops_results = sess.run(eval_ops, feed_dict={self.x:train_data,self.y:train_label,self.keep_prob:0.7})loss_val, train_acc = eval_ops_results[0:2]acc_list.append(train_acc)if (i+1) % 100 == 0:acc_mean = np.mean(acc_list)print('step:{0},loss:{1:.5},acc:{2:.5},acc_mean:{3:.5}'.format(i+1,loss_val,train_acc,acc_mean))if (i+1) % 1000 == 0:test_acc_list = []for j in range(TEST_STEP):test_data, test_label, _ = self.batch_test_data.next_batch(TRAIN_SIZE)acc_val = sess.run([self.acc],feed_dict={self.x:test_data,self.y:test_label,self.keep_prob:1.0})test_acc_list.append(acc_val)print('[Test ] step:{0}, mean_acc:{1:.5}'.format(i+1, np.mean(test_acc_list)))# 保存训练后的模型os.makedirs(SAVE_PATH, exist_ok=True)self.saver.save(sess, SAVE_PATH + 'my_model.ckpt')

训练结果如下:

在这里插入图片描述

5.5 对猫狗图像进行2分类

在这里插入图片描述

在这里插入图片描述

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/84693.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

案例丨如何提升可视化分析能力?听听这两家企业怎么说

神策分析 2.5 版本正式发布经营分析能力以来,已有不少客户接入使用,并充分实现了可视化分析能力的提升。 本文将为大家分享两家客户的真实反馈,希望能够帮助您进一步了解神策经营分析的能力。 案例一:神策数据助力美篇打造公司级“…

基于Python+Pygame实现一个俄罗斯方块小游戏【完整代码】

俄罗斯方块,一款起源于上世纪80年代的经典电子游戏,凭借简单的规则和独特的魅力,一跃成为全球家喻户晓的经典。你知道其实只需要一些基础的编程知识,就可以自己实现它吗?今天,我们将使用Python的Pygame库&a…

第八天:gec6818arm开发板和Ubuntu中安装并且编译移植mysql驱动连接QT执行程序

一、Ubuntu18.04中安装并且编译移植mysql驱动程序连接qt执行程序 1 、安装Mysql sudo apt-get install mysql-serverapt-get isntall mysql-clientsudo apt-get install libmysqlclient-d2、查看是否安装成功,即查看MySQL版本 mysql --version 3、MySQL启动…

有了Spring为什么还需要SpringBoot呢

目录 一、Spring缺点分析 二、什么是Spring Boot 三、Spring Boot的核心功能 3.1 起步依赖 3.2 自动装配 一、Spring缺点分析 1. 配置文件和依赖太多了!!! spring是一个非常优秀的轻量级框架,以IOC(控制反转&…

@DateTimeFormat 和 @JsonFormat 的详细研究

关于这两个时间转化注解,先说结论 一、介绍 1、DateTimeFormat DateTimeFormat 并不会根据得到其属性 pattern 把前端传入的数据转换成自己想要的格式,而是将前端的String类型数据封装到Date类型;其次它的 pattern 属性是用来规范前端传入…

python每日一题(模拟用户登录验证)

1、题目 预先设定正确用户名与密码,用来验证用户是否登录成功。 第一次: ① 输入用户名与密码,如果用户名与密码正确,则提示登录成功; ② 如果用户名错误(不管密码是否正确),则需要重…

TOGAF架构开发方法—初步阶段

本章描述了满足新企业体系结构业务指令所需的准备和启动活动,包括组织特定体系结构框架的定义和原则的定义。 一、目标 初步阶段的目标是: 确定组织所需的体系结构功能: 审查进行企业架构的组织背景确定受体系结构功能影响的企业组织的元素并确定其范围确定与架构功能相交的…

10分钟设置免费海外远程桌面

前言 本教程将向您介绍如何使用 Amazon Lightsail 服务的免费套餐轻松搭建属于您的远程桌面。依托于 Amazon 全球可用区,您可以在世界各地搭建符合您配置需求的远程桌面。 本教程需要先拥有亚马逊云科技海外账户。现在注册亚马逊云科技账户可以享受12个月免费套餐…

北工大汇编——综合题(2)

题目要求 编写一个比赛得分程序。共有7 个评委,按百分制打分,计分 原则是去掉一个最高分和一个最低分,求平均值。要求: 评委的打分以十进制从键盘输入。成绩以十进制给出,并保留 1位小数。输入输出时屏幕上要有相应提…

基于海康Ehome/ISUP接入到LiveNVR实现海康摄像头、录像机视频统一汇聚,做到物联网无插件直播回放和控制

LiveNVR支持海康NVR摄像头通EHOME接入ISUP接入LiveNVR分发视频流或是转GB28181 1、海康 ISUP 接入配置2、海康设备接入2.1、海康EHOME接入配置示例2.2、海康ISUP接入配置示例 3、通道配置3.1、直播流接入类型 海康ISUP3.2、海康 ISUP 设备ID3.3、启用保存3.4、接入成功 4、相关…

代码随想录算法训练营第二天(C) | 977.有序数组的平方 209.长度最小的子数组 59.螺旋矩阵

文章目录 前言一、977.有序数组的平方二、209.长度最小的子数组三、59.螺旋矩阵总结 前言 java版: 代码随想录算法训练营第二天 | 977.有序数组的平方 ,209.长度最小的子数组 ,59.螺旋矩阵_愚者__的博客-CSDN博客 一、977.有序数组的平方 …

python实现命令tree的效果

把所有的文档都传到了git上,但是内容过多找起来不方便,突发奇想如果能在readme中,递归列出所有文件同时添加上对应的地址,这样只需要搜索到对应的文件点击就能跳转过去了… 列出文件总得有个显示格式,所以就按照tree的来了… 用python实现命令tree的效果 首先,这是tree的效果…

坐标休斯顿,TDengine 受邀参与第九届石油天然气数字化大会

美国中部时间 9 月 14 日至 15 日,第九届石油天然气数字化大会在美国德克萨斯州-休斯顿-希尔顿美洲酒店举办。本次大会汇聚了数百名全球石油天然气技术高管及众多极具创新性的数据技术方案商,组织了上百场硬核演讲,技术专家与行业从业者共聚一…

【unity小技巧】Unity 存储存档保存——PlayerPrefs、JsonUtility和MySQL数据库的使用

文章目录 前言PlayerPrefs一、基本介绍二、Demo三、优缺点 JsonUtility一、基本使用二、Demo三、优缺点 Mysql(扩展)完结 前言 游戏存档不言而喻,是游戏设计中的重要元素,可以提高游戏的可玩性,为玩家提供更多的自由和…

DEM格式转换:转换NSDTF-DEM国标数据格式为通用格式,使用ArcGIS工具转换NSDTF-DEM国标.dem文件为通用.tif格式。

DEM格式转换:转换NSDTF-DEM国标数据格式为通用格式,使用ArcGIS工具转换NSDTF-DEM国标.dem文件为通用.tif格式。 *.dem是一种比较常见的DEM数据格式,其有两种文件组织方式,即NSDTF-DEM和USGS-DEM。 (1)NSDT…

Dubbo3应用开发—Dubbo序列化方案(Kryo、FST、FASTJSON2、ProtoBuf序列化方案的介绍和使用)

Dubbo序列化方案(Kryo、FST、FASTJSON2、ProtoBuf序列化方案的介绍和使用) 序列化简介 序列化是Dubbo在RPC中非常重要的一个组成部分,其核心作用就是把网络传输中的数据,按照特定的格式进行传输。减小数据的体积,从而…

SSL双向认证-SpringBoot项目

SSL双向认证需要CA证书,开发过程可以利用自签CA证书进行调试验证。 自签CA证书生成过程:SSL双向认证-自签CA证书生成 1.将server.p12证书和client.jks证书复制到项目resources目录下 2.修改配置文件,增加下述内容 #https端口 server.port…

Excel中的宏、VBA

一、宏是什么? EXCEL MACRO 是一种记录和播放工具,它仅记录您的 Excel 步骤,并且宏将根据需要播放任意多次。 VBA 宏可自动执行重复任务,从而节省了时间。 这是一段可在 Excel 环境中运行的编程代码,但您无需成为编码…

软件定制APP开发步骤分析|小程序

软件定制APP开发步骤分析|小程序 软件定制开发步骤: 1.需求分析: 这是软件定制开发的第一步,也是最关键的一步。在这个阶段,软件开发团队需要与客户进行沟通,了解客户的具体需求和期望。通过讨论和交流,确…

【力扣每日一题】2023.9.21 收集树中金币

目录 题目: 示例: 分析: 代码: 题目: 示例: 分析: 题目给我们一棵树,不过这棵树不是普通的树,而是无向无根树。给我们一个二维数组表示节点之间的连接关系&#xff…