软件杯 题目:基于卷积神经网络的手写字符识别 - 深度学习

文章目录

  • 0 前言
  • 1 简介
  • 2 LeNet-5 模型的介绍
    • 2.1 结构解析
    • 2.2 C1层
    • 2.3 S2层
      • S2层和C3层连接
    • 2.4 F6与C5层
  • 3 写数字识别算法模型的构建
    • 3.1 输入层设计
    • 3.2 激活函数的选取
    • 3.3 卷积层设计
    • 3.4 降采样层
    • 3.5 输出层设计
  • 4 网络模型的总体结构
  • 5 部分实现代码
  • 6 在线手写识别
  • 7 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

基于卷积神经网络的手写字符识别

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

在这里插入图片描述

1 简介

该设计学长使用python基于TensorFlow设计手写数字识别算法,并编程实现GUI界面,构建手写数字识别系统。

这是学长做的深度学习demo,大家可以用于竞赛课题。

这里学长不会以论文的形式展现,而是以编程实战完成深度学习项目的角度去描述。

项目要求:主要解决的问题是手写数字识别,最终要完成一个识别系统。

设计识别率高的算法,实现快速识别的系统。

2 LeNet-5 模型的介绍

学长实现手写数字识别,使用的是卷积神经网络,建模思想来自LeNet-5,如下图所示:

在这里插入图片描述

2.1 结构解析

这是原始的应用于手写数字识别的网络,我认为这也是最简单的深度网络。

LeNet-5不包括输入,一共7层,较低层由卷积层和最大池化层交替构成,更高层则是全连接和高斯连接。

LeNet-5的输入与BP神经网路的不一样。这里假设图像是黑白的,那么LeNet-5的输入是一个32*32的二维矩阵。同
时,输入与下一层并不是全连接的,而是进行稀疏连接。本层每个神经元的输入来自于前一层神经元的局部区域(5×5),卷积核对原始图像卷积的结果加上相应的阈值,得出的结果再经过激活函数处理,输出即形成卷积层(C层)。卷积层中的每个特征映射都各自共享权重和阈值,这样能大大减少训练开销。降采样层(S层)为减少数据量同时保存有用信息,进行亚抽样。

2.2 C1层

第一个卷积层(C1层)由6个特征映射构成,每个特征映射是一个28×28的神经元阵列,其中每个神经元负责从5×5的区域通过卷积滤波器提取局部特征。一般情况下,滤波器数量越多,就会得出越多的特征映射,反映越多的原始图像的特征。本层训练参数共6×(5×5+1)=156个,每个像素点都是由上层5×5=25个像素点和1个阈值连接计算所得,共28×28×156=122304个连接。

2.3 S2层

S2层是对应上述6个特征映射的降采样层(pooling层)。pooling层的实现方法有两种,分别是max-pooling和mean-
pooling,LeNet-5采用的是mean-
pooling,即取n×n区域内像素的均值。C1通过2×2的窗口区域像素求均值再加上本层的阈值,然后经过激活函数的处理,得到S2层。pooling的实现,在保存图片信息的基础上,减少了权重参数,降低了计算成本,还能控制过拟合。本层学习参数共有1*6+6=12个,S2中的每个像素都与C1层中的2×2个像素和1个阈值相连,共6×(2×2+1)×14×14=5880个连接。

S2层和C3层连接

S2层和C3层的连接比较复杂。C3卷积层是由16个大小为10×10的特征映射组成的,当中的每个特征映射与S2层的若干个特征映射的局部感受野(大小为5×5)相连。其中,前6个特征映射与S2层连续3个特征映射相连,后面接着的6个映射与S2层的连续的4个特征映射相连,然后的3个特征映射与S2层不连续的4个特征映射相连,最后一个映射与S2层的所有特征映射相连。

此处卷积核大小为5×5,所以学习参数共有6×(3×5×5+1)+9×(4×5×5+1)+1×(6×5×5+1)=1516个参数。而图像大小为28×28,因此共有151600个连接。

S4层是对C3层进行的降采样,与S2同理,学习参数有16×1+16=32个,同时共有16×(2×2+1)×5×5=2000个连接。
C5层是由120个大小为1×1的特征映射组成的卷积层,而且S4层与C5层是全连接的,因此学习参数总个数为120×(16×25+1)=48120个。

2.4 F6与C5层

F6是与C5全连接的84个神经元,所以共有84×(120+1)=10164个学习参数。

卷积神经网络通过通过稀疏连接和共享权重和阈值,大大减少了计算的开销,同时,pooling的实现,一定程度上减少了过拟合问题的出现,非常适合用于图像的处理和识别。

3 写数字识别算法模型的构建

3.1 输入层设计

输入为28×28的矩阵,而不是向量。

在这里插入图片描述

3.2 激活函数的选取

Sigmoid函数具有光滑性、鲁棒性和其导数可用自身表示的优点,但其运算涉及指数运算,反向传播求误差梯度时,求导又涉及乘除运算,计算量相对较大。同时,针对本文构建的含有两层卷积层和降采样层,由于sgmoid函数自身的特性,在反向传播时,很容易出现梯度消失的情况,从而难以完成网络的训练。因此,本文设计的网络使用ReLU函数作为激活函数。

在这里插入图片描述

3.3 卷积层设计

学长设计卷积神经网络采取的是离散卷积,卷积步长为1,即水平和垂直方向每次运算完,移动一个像素。卷积核大小为5×5。

3.4 降采样层

学长设计的降采样层的pooling方式是max-pooling,大小为2×2。

3.5 输出层设计

输出层设置为10个神经网络节点。数字0~9的目标向量如下表所示:

在这里插入图片描述

4 网络模型的总体结构

在这里插入图片描述

5 部分实现代码

使用Python,调用TensorFlow的api完成手写数字识别的算法。

注:我的程序运行环境是:Win10,python3.。

当然,也可以在Linux下运行,由于TensorFlow对py2和py3兼容得比较好,在Linux下可以在python2.7中运行。

#!/usr/bin/env python2# -*- coding: utf-8 -*-#import modulesimport numpy as npimport matplotlib.pyplot as plt#from sklearn.metrics import confusion_matriximport tensorflow as tfimport timefrom datetime import timedeltaimport mathfrom tensorflow.examples.tutorials.mnist import input_datadef new_weights(shape):return tf.Variable(tf.truncated_normal(shape,stddev=0.05))def new_biases(length):return tf.Variable(tf.constant(0.1,shape=length))def conv2d(x,W):return tf.nn.conv2d(x,W,strides=[1,1,1,1],padding='SAME')def max_pool_2x2(inputx):return tf.nn.max_pool(inputx,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')#import datadata = input_data.read_data_sets("./data", one_hot=True) # one_hot means [0 0 1 0 0 0 0 0 0 0] stands for 2print("Size of:")print("--Training-set:\t\t{}".format(len(data.train.labels)))print("--Testing-set:\t\t{}".format(len(data.test.labels)))print("--Validation-set:\t\t{}".format(len(data.validation.labels)))data.test.cls = np.argmax(data.test.labels,axis=1)  # show the real test labels: [7 2 1 ..., 4 5 6], 10000valuesx = tf.placeholder("float",shape=[None,784],name='x')x_image = tf.reshape(x,[-1,28,28,1])y_true = tf.placeholder("float",shape=[None,10],name='y_true')y_true_cls = tf.argmax(y_true,dimension=1)# Conv 1layer_conv1 = {"weights":new_weights([5,5,1,32]),"biases":new_biases([32])}h_conv1 = tf.nn.relu(conv2d(x_image,layer_conv1["weights"])+layer_conv1["biases"])h_pool1 = max_pool_2x2(h_conv1)# Conv 2layer_conv2 = {"weights":new_weights([5,5,32,64]),"biases":new_biases([64])}h_conv2 = tf.nn.relu(conv2d(h_pool1,layer_conv2["weights"])+layer_conv2["biases"])h_pool2 = max_pool_2x2(h_conv2)# Full-connected layer 1fc1_layer = {"weights":new_weights([7*7*64,1024]),"biases":new_biases([1024])}h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64])h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,fc1_layer["weights"])+fc1_layer["biases"])# Droupout Layerkeep_prob = tf.placeholder("float")h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob)# Full-connected layer 2fc2_layer = {"weights":new_weights([1024,10]),"biases":new_weights([10])}# Predicted classy_pred = tf.nn.softmax(tf.matmul(h_fc1_drop,fc2_layer["weights"])+fc2_layer["biases"]) # The output is like [0 0 1 0 0 0 0 0 0 0]y_pred_cls = tf.argmax(y_pred,dimension=1) # Show the real predict number like '2'# cost function to be optimizedcross_entropy = -tf.reduce_mean(y_true*tf.log(y_pred))optimizer = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(cross_entropy)# Performance Measurescorrect_prediction = tf.equal(y_pred_cls,y_true_cls)accuracy = tf.reduce_mean(tf.cast(correct_prediction,"float"))with tf.Session() as sess:init = tf.global_variables_initializer()sess.run(init)train_batch_size = 50def optimize(num_iterations):total_iterations=0start_time = time.time()for i in range(total_iterations,total_iterations+num_iterations):x_batch,y_true_batch = data.train.next_batch(train_batch_size)feed_dict_train_op = {x:x_batch,y_true:y_true_batch,keep_prob:0.5}feed_dict_train = {x:x_batch,y_true:y_true_batch,keep_prob:1.0}sess.run(optimizer,feed_dict=feed_dict_train_op)# Print status every 100 iterations.if i%100==0:# Calculate the accuracy on the training-set.acc = sess.run(accuracy,feed_dict=feed_dict_train)# Message for printing.msg = "Optimization Iteration:{0:>6}, Training Accuracy: {1:>6.1%}"# Print it.print(msg.format(i+1,acc))# Update the total number of iterations performedtotal_iterations += num_iterations# Ending timeend_time = time.time()# Difference between start and end_times.time_dif = end_time-start_time# Print the time-usageprint("Time usage:"+str(timedelta(seconds=int(round(time_dif)))))test_batch_size = 256def print_test_accuracy():# Number of images in the test-set.num_test = len(data.test.images)cls_pred = np.zeros(shape=num_test,dtype=np.int)i = 0while i < num_test:# The ending index for the next batch is denoted j.j = min(i+test_batch_size,num_test)# Get the images from the test-set between index i and jimages = data.test.images[i:j, :]# Get the associated labelslabels = data.test.labels[i:j, :]# Create a feed-dict with these images and labels.feed_dict={x:images,y_true:labels,keep_prob:1.0}# Calculate the predicted class using Tensorflow.cls_pred[i:j] = sess.run(y_pred_cls,feed_dict=feed_dict)# Set the start-index for the next batch to the# end-index of the current batchi = jcls_true = data.test.clscorrect = (cls_true==cls_pred)correct_sum = correct.sum()acc = float(correct_sum) / num_test# Print the accuracymsg = "Accuracy on Test-Set: {0:.1%} ({1}/{2})"print(msg.format(acc,correct_sum,num_test))# Performance after 10000 optimization iterationsoptimize(num_iterations=10000)print_test_accuracy()savew_hl1 = layer_conv1["weights"].eval()saveb_hl1 = layer_conv1["biases"].eval()savew_hl2 = layer_conv2["weights"].eval()saveb_hl2 = layer_conv2["biases"].eval()savew_fc1 = fc1_layer["weights"].eval()saveb_fc1 = fc1_layer["biases"].eval()savew_op = fc2_layer["weights"].eval()saveb_op = fc2_layer["biases"].eval()np.save("savew_hl1.npy", savew_hl1)np.save("saveb_hl1.npy", saveb_hl1)np.save("savew_hl2.npy", savew_hl2)np.save("saveb_hl2.npy", saveb_hl2)np.save("savew_hl3.npy", savew_fc1)np.save("saveb_hl3.npy", saveb_fc1)np.save("savew_op.npy", savew_op)np.save("saveb_op.npy", saveb_op)

运行结果显示:测试集中准确率大概为99.2%。

在这里插入图片描述
查看混淆矩阵

在这里插入图片描述

6 在线手写识别

请添加图片描述

在这里插入图片描述

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/846776.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于springboot+vue的医院信息管理系统

开发语言&#xff1a;Java框架&#xff1a;springbootJDK版本&#xff1a;JDK1.8服务器&#xff1a;tomcat7数据库&#xff1a;mysql 5.7&#xff08;一定要5.7版本&#xff09;数据库工具&#xff1a;Navicat11开发软件&#xff1a;eclipse/myeclipse/ideaMaven包&#xff1a;…

HTML静态网页成品作业(HTML+CSS)—— 节日端午节介绍网页(5个页面)

&#x1f389;不定期分享源码&#xff0c;关注不丢失哦 文章目录 一、作品介绍二、作品演示三、代码目录四、网站代码HTML部分代码 五、源码获取 一、作品介绍 &#x1f3f7;️本套采用HTMLCSS&#xff0c;未使用Javacsript代码&#xff0c;共有5个页面。 二、作品演示 三、代…

Rust自动生成文件解析

目录 一、生成目录解析二、生成文件解析2.1 Cargo.toml2.2 main函数解析 一、生成目录解析 先使用cargo clean命令删除所有生成的文件&#xff0c;下图显示了目录结构和 main.rs文件 使用cargo new testrust时自动创建出名为testrust的Rust项目。内部主要包含一个src的源码文…

Qt——升级系列(Level Two):Hello Qt 程序实现、项目文件解析、

Hello Qt 程序实现 使用“按钮”实现 纯代码方式实现&#xff1a; // Widget构造函数的实现 Widget::Widget(QWidget *parent): QWidget(parent) // 使用父类构造函数初始化QWidget&#xff0c;传入父窗口指针, ui(new Ui::Widget) // 创建Ui::Widget类的实例&#xff0c;并…

切勿大意!痉挛性斜颈治疗中的三个重要“禁忌”,后果堪忧!

今天&#xff0c;要给大家讲一个非常重要的话题——痉挛性斜颈的治疗。痉挛性斜颈是一种常见的神经肌肉疾病&#xff0c;患者在日常生活中可能会遇到许多困扰和不便。因此&#xff0c;及早治疗对患者来说至关重要。 然而&#xff0c;在治疗痉挛性斜颈的过程中&#xff0c;千万切…

永磁同步电机高性能控制算法(12)——基于预测电流误差补偿的强鲁棒预测控制有限集预测控制与连续集预测控制的对比

1.文章简介 最近看到一篇比较有意思的文章&#xff0c;24年3月9日才刚刚收录。 众所周知模型预测控制受电机参数影响还是很大的。所以呢&#xff0c;各种观测器、参数辨识等算法都被用到预测控制中。 观测器设计的话就相对而言比较复杂&#xff1b;参数辨识也比较复杂&#x…

0基础学习Elasticsearch-使用Java操作ES

文章目录 1 背景2 前言3 Java如何操作ES3.1 引入依赖3.2 依赖介绍3.3 隐藏依赖3.4 初始化客户端&#xff08;获取ES连接&#xff09;3.5 发送请求给ES 1 背景 上篇学习了0基础学习Elasticsearch-Quick start&#xff0c;随后本篇研究如何使用Java操作ES 2 前言 建议通篇阅读再回…

MaxKey本地运行实战指南

MaxKey 本地运行总结 概述开发环境准备 主页传送门 &#xff1a; &#x1f4c0; 传送 概述 MaxKey单点登录认证系统&#xff0c;谐音为马克思的钥匙寓意是最大钥匙&#xff0c;是业界领先的IAM-IDaas身份管理和认证产品&#xff1b;支持OAuth 2.x/OpenID Connect、SAML 2.0、J…

记一次线上数据库连接超时异常问题

最近其他团队的开发人员告知我&#xff0c;我们项目有个feign接口调用失败了。我查看日志发现&#xff0c;其原因是尝试数据库连接超时&#xff0c;30秒内都没有连接成功。 我首先判断可能是网络不稳定&#xff0c;在一定时间内连接不上数据库。我登录到服务器环境看&#xff0…

德克萨斯大学奥斯汀分校自然语言处理硕士课程汉化版(第五周) - Transformer

Transformer 1. 注意力机制 在语言建模中&#xff0c;注意力(attention)是一个关键机制&#xff0c;用于在给定上下文中访问相关信息以进行预测。注意力机制允许模型根据输入上下文中的重要信息来加权关注不同的部分&#xff0c;并根据其重要性来决定对不同部分的关注程度。 …

【工具】探索 MOU:每用户通话时长

缘分让我们相遇乱世以外 命运却要我们危难中相爱 也许未来遥远在光年之外 我愿守候未知里为你等待 我没想到为了你我能疯狂到 山崩海啸没有你根本不想逃 我的大脑为了你已经疯狂到 脉搏心跳没有你根本不重要 &#x1f3b5; 邓紫棋《光年之外》 什么是 MOU…

discuz点微同城源码34.7+全套插件+小程序前端

discuz点微同城源码34.7全套插件小程序前后端 模板挺好看的 带全套插件 自己耐心点配置一下插件 可以H5可以小程序

YOLOv1深入解析与实战:目标检测算法原理

参考&#xff1a; https://zhuanlan.zhihu.com/p/667046384 https://blog.csdn.net/weixin_41424926/article/details/105383064 https://arxiv.org/pdf/1506.02640 1. 算法介绍 学习目标检测算法&#xff0c;yolov1是必看内容&#xff0c;不同于生成模型&#xff0c;没有特别…

CSAPP Lab07——Malloc Lab完成思路

完整代码见&#xff1a;CSAPP/malloclab-handout at main SnowLegend-star/CSAPP (github.com) Malloc Lab 按照惯例&#xff0c;我先是上来就把mm.c编译了一番&#xff0c;结果产生如下报错。搜索过后看样子应该是编译器的版本不匹配&#xff0c;得建立条软链接。 经过多番…

【数据结构】链式二叉树详解

个人主页~ 链式二叉树基本内容~ 链式二叉树详解 1、通过前序遍历的数组来构建二叉树2、二叉树的销毁3、二叉树节点个数4、二叉树叶子节点个数5、二叉树第k层节点个数6、二叉树查找7、前序遍历8、中序遍历9、后序遍历10、层序遍历与检查二叉树是否为完全二叉树Queue.hQueue.c层序…

WordPress子比内容同步插件

1.支持分类替换 将主站同步过来的文章分类进行替换 2.支持本地化文章图片 &#xff08;使用储存桶可能会导致无法保存图片&#xff09; 3.支持自定义文章作者&#xff08;选择多个作者则同步到的文章作者将会随机分配&#xff09; 4.支持将同步过来的文章自定义文章状态&…

Java | Leetcode Java题解之第128题最长连续序列

题目&#xff1a; 题解&#xff1a; class Solution {public int longestConsecutive(int[] nums) {Set<Integer> num_set new HashSet<Integer>();for (int num : nums) {num_set.add(num);}int longestStreak 0;for (int num : num_set) {if (!num_set.contai…

乡村振兴与文化传承:挖掘乡村历史文化资源,传承乡村优秀传统,打造具有地方特色的美丽乡村文化品牌

目录 一、引言 二、乡村历史文化资源的挖掘与保护 &#xff08;一&#xff09;乡村历史文化资源的内涵 &#xff08;二&#xff09;乡村历史文化资源的挖掘 &#xff08;三&#xff09;乡村历史文化资源的保护 三、乡村优秀传统的传承与创新 &#xff08;一&#xff09;…

4.基础纹理

纹理的目的&#xff1a;使用一张图片来控制模型的外观纹理映射技术&#xff1a;把一张图“黏”在模型表面&#xff0c;逐纹素&#xff08;与像素不同&#xff09;地控制模型颜色通常在建模软件中利用纹理展开技术实现&#xff0c;把纹理映射坐标存储在每个顶点上纹理映射坐标&a…

数学基础——微积分在机器/深度学习上的应用

目录 微分学 导数 偏导数 梯度 梯度下降算法 反向传播算法 自动求导 计算图 正则化与过拟合 L1正则化 L2正则化 Dropout正则化 拉格朗日对偶问题 拉格朗日乘数法 凸优化 对偶问题 KKT条件 Slater条件 积分学 笔记内容 微积分是17世纪后半叶发展起来的数…