YOLOv7添加注意力机制和各种改进模块

YOLOv7添加注意力机制和各种改进模块代码免费下载:完整代码

添加的部分模块代码:

########CBAM
class ChannelAttentionModule(nn.Module):def __init__(self, c1, reduction=16):super(ChannelAttentionModule, self).__init__()mid_channel = c1 // reductionself.avg_pool = nn.AdaptiveAvgPool2d(1)self.max_pool = nn.AdaptiveMaxPool2d(1)self.shared_MLP = nn.Sequential(nn.Linear(in_features=c1, out_features=mid_channel),nn.LeakyReLU(0.1, inplace=True),nn.Linear(in_features=mid_channel, out_features=c1))self.act = nn.Sigmoid()# self.act=nn.SiLU()def forward(self, x):avgout = self.shared_MLP(self.avg_pool(x).view(x.size(0), -1)).unsqueeze(2).unsqueeze(3)maxout = self.shared_MLP(self.max_pool(x).view(x.size(0), -1)).unsqueeze(2).unsqueeze(3)return self.act(avgout + maxout)class SpatialAttentionModule(nn.Module):def __init__(self):super(SpatialAttentionModule, self).__init__()self.conv2d = nn.Conv2d(in_channels=2, out_channels=1, kernel_size=7, stride=1, padding=3)self.act = nn.Sigmoid()def forward(self, x):avgout = torch.mean(x, dim=1, keepdim=True)maxout, _ = torch.max(x, dim=1, keepdim=True)out = torch.cat([avgout, maxout], dim=1)out = self.act(self.conv2d(out))return outclass CBAM(nn.Module):def __init__(self, c1, c2):super(CBAM, self).__init__()self.channel_attention = ChannelAttentionModule(c1)self.spatial_attention = SpatialAttentionModule()def forward(self, x):out = self.channel_attention(x) * xout = self.spatial_attention(out) * outreturn out
##############CBAM
########SE
class SEAttention(nn.Module):def __init__(self, channel=512,reduction=16):super().__init__()self.avg_pool = nn.AdaptiveAvgPool2d(1)self.fc = nn.Sequential(nn.Linear(channel, channel // reduction, bias=False),nn.ReLU(inplace=True),nn.Linear(channel // reduction, channel, bias=False),nn.Sigmoid())def init_weights(self):for m in self.modules():if isinstance(m, nn.Conv2d):init.kaiming_normal_(m.weight, mode='fan_out')if m.bias is not None:init.constant_(m.bias, 0)elif isinstance(m, nn.BatchNorm2d):init.constant_(m.weight, 1)init.constant_(m.bias, 0)elif isinstance(m, nn.Linear):init.normal_(m.weight, std=0.001)if m.bias is not None:init.constant_(m.bias, 0)def forward(self, x):b, c, _, _ = x.size()y = self.avg_pool(x).view(b, c)y = self.fc(y).view(b, c, 1, 1)return x * y.expand_as(x)
########SE
#######GAM
class GAMAttention(nn.Module):# https://paperswithcode.com/paper/global-attention-mechanism-retain-informationdef __init__(self, c1, c2, group=True, rate=4):super(GAMAttention, self).__init__()self.channel_attention = nn.Sequential(nn.Linear(c1, int(c1 / rate)),nn.ReLU(inplace=True),nn.Linear(int(c1 / rate), c1))self.spatial_attention = nn.Sequential(nn.Conv2d(c1, c1 // rate, kernel_size=7, padding=3, groups=rate) if group else nn.Conv2d(c1, int(c1 / rate),kernel_size=7,padding=3),nn.BatchNorm2d(int(c1 / rate)),nn.ReLU(inplace=True),nn.Conv2d(c1 // rate, c2, kernel_size=7, padding=3, groups=rate) if group else nn.Conv2d(int(c1 / rate), c2,kernel_size=7,padding=3),nn.BatchNorm2d(c2))def forward(self, x):b, c, h, w = x.shapex_permute = x.permute(0, 2, 3, 1).view(b, -1, c)x_att_permute = self.channel_attention(x_permute).view(b, h, w, c)x_channel_att = x_att_permute.permute(0, 3, 1, 2)x = x * x_channel_attx_spatial_att = self.spatial_attention(x).sigmoid()x_spatial_att = channel_shuffle(x_spatial_att, 4)  # last shuffleout = x * x_spatial_attreturn outdef channel_shuffle(x, groups=2):  ##shuffle channel# RESHAPE----->transpose------->FlattenB, C, H, W = x.size()out = x.view(B, groups, C // groups, H, W).permute(0, 2, 1, 3, 4).contiguous()out = out.view(B, C, H, W)return out
#######GAM
#####NAMAttention  该注意力机制只有通道注意力机制的代码,空间的没有
import torch.nn as nn
import torch
from torch.nn import functional as Fclass Channel_Att(nn.Module):def __init__(self, channels, t=16):super(Channel_Att, self).__init__()self.channels = channelsself.bn2 = nn.BatchNorm2d(self.channels, affine=True)def forward(self, x):residual = xx = self.bn2(x)weight_bn = self.bn2.weight.data.abs() / torch.sum(self.bn2.weight.data.abs())x = x.permute(0, 2, 3, 1).contiguous()x = torch.mul(weight_bn, x)x = x.permute(0, 3, 1, 2).contiguous()x = torch.sigmoid(x) * residual  #return xclass NAMAttention(nn.Module):def __init__(self, channels, out_channels=None, no_spatial=True):super(NAMAttention, self).__init__()self.Channel_Att = nn.Sequential(*(Channel_Att(channels)for _ in range(1)))def forward(self, x):# print(x.device)## device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')x_out1 = self.Channel_Att(x)return x_out1
#####NAMAttentionclass RepGhostBottleneck1(nn.Module):# RepGhostNeXt Bottleneckdef __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_outsuper().__init__()self.c_ = int(c2 * e)  # hidden channels# attention mechanism can be usedself.m = nn.Sequential(*(RepGhostBottleneck(c1, c2, 2*self.c_) for _ in range(n)))def forward(self, x):return self.m(x)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/844384.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

[Linux系统编程] 静态库与动态库

一.库的概念 库是写好的现有的,成熟的,可以复用的代码。 本质上来说库是一种可执行代码的二进制形式,可以被操作系统载入内存执行。库有两种:静态库(.a、.lib)和动态库(.so、.dll)。…

继承--5.29

继承格式: package javatest2;public class people {int age;double workday;public people(int age, double workday) {this.age age;this.workday workday;} }package javatest2;public class student extends people {int studyday;public student(int age, d…

Prompt工程与实践

Prompt工程与实践 一、Prompt与大模型 1.1 大模型的定义 大模型本质上就是一个概率生成模型,该模型的模型参数足够大,并且在训练过程中阅读了非常多的各个领域的语料。这个时候,如果通过一个正确的、有效的指令去引导这个模型,…

【Python Cookbook】S01E03 找到最大最小的N个元素

目录 问题解决方案讨论 问题 如何在一个集合中找到最大或最小的 N 个元素? 解决方案 使用 heapq 模块。 pip install heapqheapq 模块中,有 nlargest() 以及 nsmallest() 两个函数: import heapqnums [1, 8, 23, 2, 7, -4, 8, 18, 42, …

小阿轩yx-Shell编程之正则表达式与文本处理器

小阿轩yx-Shell编程之正则表达式与文本处理器 正则表达式 (RegularExpression,RE) 正则表达式概述 正则表达式的定义 又称 正规表达式常规表达式 代码中常简写为 regex、regexp 或 RE 正则表达式 使用单个字符串来描述、匹配一系列符…

C++笔试强训day36

目录 1.提取不重复的整数 2.【模板】哈夫曼编码 3.abb 1.提取不重复的整数 链接https://www.nowcoder.com/practice/253986e66d114d378ae8de2e6c4577c1?tpId37&tqId21232&ru/exam/oj 按照题意模拟就行&#xff0c;记得从右往左遍历 #include <iostream> usi…

GPT-4O神器来袭!自动生成Figma设计稿,移动端开发瞬间加速!

2024年5月29日- 近日&#xff0c;一款基于GPT-4O技术的创新工具成功实现根据产品需求文档&#xff08;PRD&#xff09;自动生成Figma设计稿的功能&#xff0c;为移动端应用开发者带来革命性的便捷。据悉&#xff0c;该功能主要针对移动端应用进行优化&#xff0c;并支持使用高质…

【环境配置】windows的磁盘分区、VMware下的ubuntu20的安装、虚拟机系统界面过小的处理

这段时间在折腾自己的笔记本&#xff0c;刚好也有同学新买台式机咨询安装VMware软件&#xff0c;就顺便记录下windows的环境的一些操作。方便自己需要时查阅。 1 windows磁盘分区 在Windows系统中&#xff0c;磁盘分区和管理可以通过【磁盘管理】工具进行。要打开磁盘管理&…

浅谈MySQL事务

目录 一&#xff0c;事务的引入 上述的特性叫做“原子性”&#xff08;事务最核心操作&#xff0c;事务还具备别的性质在下文&#xff09;&#xff1b; 二&#xff0c;日志体系 三&#xff0c;事务的使用 四&#xff0c;事务的基本特性 1.脏读&#xff1a; 2.不可重复读 …

系统架构设计师【第2章】: 计算机系统基础知识 (核心总结)

文章目录 2.1 计算机系统概述2.2 计算机硬件2.2.1 计算机硬件组成2.2.2 处理器2.2.3 存储器2.2.4 总线2.2.5 接口2.2.6 外部设备 2.3 计算机软件2.3.1 计算机软件概述2.3.2 操作系统2.3.3 数据库2.3.4 文件系统2.3.5 网络协议2.3.6 中间件2.3.7 软件构件2.3.8 …

安卓开发板_开发评估套件_4G/5G联发科MTK安卓主板定制开发

安卓开发板采用了联发科八核A53 CPU&#xff0c;主频2.0GHz&#xff0c;采用12nm制程工艺&#xff0c;拥有强大的通用计算性能。配备GE8300 GPU&#xff0c;支持1080P视频编码和H.264硬解码&#xff0c;能够解析目前流行的视频和图片格式&#xff0c;非常适合各种功能APP的测试…

网络工程基础 不同网段下的设备实现通信

交换机可以实现同一个网段下的不同设备直接通信 路由器可以实现不同的网段下的设备进行通信 路由器查看路由表命令 display ip routing-table 华为路由器配置静态路由命令&#xff1a; ip route-static 目的网络地址 子网掩码 下一跳地址 电脑判断不同网段的ip会把请求转给网…

SOL 交易机器人基本知识

有没有可以盈利的机器人&#xff1f; 是的&#xff0c;各行各业都有许多盈利机器人。在金融领域&#xff0c;交易机器人被广泛用于自动化投资策略并根据预定义的算法执行交易。这些机器人可以分析市场趋势并做出快速决策&#xff0c;从而可能带来可观的回报。同样&#xff0c;在…

CentOS下安装SVN客户端及使用方法

一、前言 Subversion&#xff08;SVN&#xff09;是一款开源的版本控制系统&#xff0c;它可以帮助开发者追踪和管理代码、文档或其他文件的更改历史。在Linux系统中&#xff0c;特别是在CentOS环境下&#xff0c;安装和使用SVN客户端是日常工作中常见的任务。本文将介绍如何在…

【PHP项目实战训练】——laravel框架的实战项目中mysql数据库的数据的数据在blade.php中展示

&#x1f468;‍&#x1f4bb;个人主页&#xff1a;开发者-曼亿点 &#x1f468;‍&#x1f4bb; hallo 欢迎 点赞&#x1f44d; 收藏⭐ 留言&#x1f4dd; 加关注✅! &#x1f468;‍&#x1f4bb; 本文由 曼亿点 原创 &#x1f468;‍&#x1f4bb; 收录于专栏&#xff1a…

【Python Cookbook】S01E02 从任意长度的可迭代对象中分解元素

目录 问题解决方案讨论 问题 从某个不确定长度的迭代对象中分解出 N N N 个元素。 解决方案 *分解操作和各种函数式语言中的列表处理功能有着一定的相似性。例如&#xff0c;如果有一个列表&#xff0c;可以像下面这样轻松将其分解为头部和尾部。 scores [99, 97, 91, 89…

Express 上传文件 Multer

在日常开发的方方面面&#xff0c;图片和资源上传已经是前后端开发中必不可少的环节了。在express中&#xff0c;如何接收和处理客户端上传的文件呢&#xff1f; 在 express 当中&#xff0c;如果要实现文件上传&#xff0c;是需要借助一个中间件 multer&#xff0c;它用于处理…

【Java】HOT100+代码随想录:动态规划(下)

目录 三、打家劫舍 LeetCode198&#xff1a;打家劫舍 LeetCode213&#xff1a;打家劫舍ii LeetCode337&#xff1a;打家劫舍iii&#xff08;树形&#xff09; 四、股票问题 时间不多了&#xff0c;其他的先不写了 LeetCode121&#xff1a;买卖股票的最佳时机 五、子序列…

Plesk面板上网站无法访问如何查看日志

近期我的网站出现无法访问的问题&#xff0c;这边想要查询为什么出现无法访问的原因&#xff0c;但不知道如何在主机上面进行检查&#xff0c;由于我使用的Hostease的Windows虚拟主机产品默认带普通用户权限的Plesk面板&#xff0c;因此联系Hostease的咨询了Hostease技术支持&a…

建立FTP服务器

文章目录 建立FTP服务器1. 使用VMware安装CentOS 7虚拟机。2. 安装完虚拟机后&#xff0c;进入虚拟机&#xff0c;修改网络配置&#xff08;onboot改为yes&#xff09;并重启网络服务&#xff0c;查看相应IP地址&#xff0c;并使用远程连接软件进行连接。3.配置yum源&#xff0…