武大深度学习期末复习-常见神经网络概念

深度学习经典神经网络概念、优缺点及应用场景

文章目录

  • 一、多层感知机(MLP)
    • 1.1 结构和原理
    • 1.2 优缺点
    • 1.3 应用场景
  • 二、卷积神经网络(CNN)
    • 2.1 结构和原理
    • 2.2 优缺点
    • 2.3 应用场景
  • 三、循环神经网络(RNN)
    • 3.1 结构和原理
    • 3.2 优缺点
    • 3.3 应用场景
  • 四、长短期记忆网络(LSTM)
    • 4.1 结构和原理
    • 4.2 优缺点
    • 4.3 应用场景
    • 4.4 和RNN的主要区别
  • 五、生成对抗网络(GAN)
    • 5.1 结构和原理
    • 5.2 优缺点
    • 5.3 应用场景
  • 六、变分自编码器 (VAE)
    • 6.1 结构和原理
    • 6.2 优缺点
    • 6.3 应用场景
    • 6.4 和GAN的相似与不同


一、多层感知机(MLP)

1.1 结构和原理

由多个全连接层组成,每个层都与前一层的所有神经元连接。
通过一系列非线性变换将输入数据映射到输出。常用于分类和回归任务。

1.2 优缺点

优点

  • 灵活性: MLP 可以适用于各种数据类型和任务,包括分类、回归和特征学习等。
  • 强大的拟合能力: 多层结构允许 MLP 学习复杂的非线性关系,因此在处理复杂数据模式时表现良好。
  • 通用性: 可以通过调整网络结构和参数来适应不同的问题和数据集。
  • 并行计算: 在训练时,由于每个神经元之间的独立计算,可以进行高效的并行计算,加速训练过程。

缺点

  • 容易过拟合: 当网络过于复杂或数据量不足时,MLP 容易过拟合训练数据,导致泛化能力下降。
  • 对数据预处理敏感: 对输入数据的缩放和标准化要求较高,不同尺度和分布的数据可能会影响网络的性能。
  • 需要大量数据和计算资源: 对于复杂的网络结构和大规模的数据集,训练 MLP 需要大量的数据和计算资源。
  • 不适用于序列数据: MLP 不擅长处理序列数据,因为它无法捕捉数据的时序信息。

1.3 应用场景

  • 图像分类: MLP 在图像分类任务中广泛应用,例如手写数字识别、物体识别等。
  • 语音识别: 用于语音识别任务,例如说话人识别、语音指令识别等。
  • 自然语言处理: 在文本分类、情感分析和命名实体识别等自然语言处理任务中有所应用。
  • 推荐系统: 用于个性化推荐系统,根据用户的历史行为和偏好进行商品或内容推荐。
  • 金融领域: 在金融领域用于信用评分、风险管理和股票预测等任务。

二、卷积神经网络(CNN)

2.1 结构和原理

包含卷积层、池化层和全连接层。卷积层用于提取局部特征,池化层用于减小特征图的尺寸,全连接层用于分类。
通过卷积和池化操作提取图像等数据的特征,然后通过全连接层进行分类或回归。

2.2 优缺点

优点

  • 局部连接和权值共享: CNN 使用局部连接和权值共享的方式有效地减少了网络参数数量,降低了计算复杂度,提高了训练效率。
    *局部连接:在传统的全连接神经网络中,每个神经元都与前一层的所有神经元相连。而在CNN中,每个神经元只与前一层的局部区域连接。例如,在图像处理中,一个神经元只负责处理图像的一个小区域,而不是整个图像。这样做的好处是减少了参数数量,降低了计算复杂度,并且能够更好地保留空间局部特征
    *权值共享: 在CNN中,每个神经元的权重参数在不同的位置上都是共享的。 这意味着在处理不同的图像区域时,神经元使用相同的权重来提取特征。例如,当一个神经元识别边缘特征时,它在图像的不同位置使用相同的权重来检测边缘。 权值共享有助于减少模型的过拟合风险,提高了模型的泛化能力,并且使得CNN更适合处理具有平移不变性的数据,如图像。
  • 对平移不变性的学习: CNN 通过卷积操作学习特征,具有对平移不变性的能力,适合处理图像等具有空间局部相关性的数据。
  • 层次化特征学习: CNN 的多层结构允许逐层提取和组合特征,从而实现层次化的特征学习,有助于捕捉数据的抽象特征。
  • 适应不同大小的输入: 由于使用卷积和池化操作,CNN 能够处理不同尺寸的输入数据,具有一定的尺度不变性。
  • 在图像处理任务上表现出色: 在图像分类、物体检测、语义分割等图像处理任务上表现出色。

缺点

  • 对空间变换不变性不敏感: 尽管 CNN 对平移不变性具有一定的学习能力,但对于其他类型的空间变换,如旋转和缩放,相对不敏感。
  • 对数据的要求高: 对于小样本或低质量的数据集,CNN 容易过拟合,需要大量的数据进行训练。
  • 计算资源消耗较大: CNN 的训练过程需要大量的计算资源,尤其是对于深层网络和大规模数据集。
  • 不适用于序列数据: CNN 不擅长处理序列数据,如文本和时间序列数据,因为它无法捕捉数据的时序信息。

2.3 应用场景

  • 图像分类: CNN 在图像分类任务中被广泛应用,如图像识别、人脸识别等。
  • 目标检测: 用于检测图像中的目标位置和类别,例如物体检测和行人检测。
  • 语义分割: 用于将图像分割成语义上有意义的区域,例如医学图像分割和自然场景理解。
  • 视频分析: CNN 可以应用于视频分析任务,如动作识别、视频内容理解等。
  • 医学影像分析: 在医学影像分析领域,CNN 被用于病灶检测、疾病诊断等任务。

三、循环神经网络(RNN)

3.1 结构和原理

具有循环连接的神经元,允许信息在网络内部传递。
适用于序列数据,如时间序列或自然语言,能够捕捉数据中的时序信息。

3.2 优缺点

优点

  • 序列处理能力: RNN 的设计使其能够处理和生成序列数据,例如时间序列、文本和音频数据。它通过隐藏状态来记忆先前的信息,有效捕捉数据中的时序关系。
  • 参数共享: RNN 在每个时间步使用相同的权重,从而减少了模型的参数数量,提高了训练效率。
  • 灵活性: RNN 可以处理变长的输入和输出序列,适用于多种任务,如序列预测和序列生成。

缺点

  • 梯度消失和梯度爆炸: RNN 在训练长序列时容易遇到梯度消失和梯度爆炸问题,导致模型难以捕捉长时间依赖关系。尽管 LSTM 和 GRU 等变种解决了这一问题,但计算复杂度也随之增加。
  • 训练困难: 由于序列数据的依赖关系,RNN 的训练过程较为复杂,收敛速度慢,训练时间长。
  • 并行化困难: 与 CNN 不同,RNN 的序列依赖性使得并行化计算困难,从而限制了训练效率的提升。

3.3 应用场景

  • 自然语言处理(NLP):文本生成: RNN 可用于生成自然语言文本,例如自动生成文章、对话等。机器翻译: RNN 可用于将一种语言翻译成另一种语言。语音识别: 将语音信号转化为文本。情感分析: 分析文本中的情感信息。

  • 时间序列预测:金融市场预测: 预测股票价格、市场趋势等。天气预报: 基于历史天气数据预测未来天气。设备维护: 预测设备故障和维护需求。

  • 语音处理:语音生成: 生成合成语音,如文本转语音。语音识别: 将语音信号转化为文字或命令。

  • 视频分析:动作识别: 从视频中识别特定的动作或行为。视频生成: 生成视频内容,如动画等。推荐系统:

  • 个性化推荐: 基于用户历史行为进行个性化推荐,如电影推荐、音乐推荐等。
    RNN 尤其适合处理和生成序列数据,在自然语言处理、时间序列预测和语音处理等领域表现尤为突出。尽管存在一些训练难点和计算复杂性问题,但其变种(如 LSTM 和 GRU)已经在很大程度上克服了这些不足

四、长短期记忆网络(LSTM)

4.1 结构和原理

一种特殊类型的RNN,具有门控单元,能够更有效地处理长期依赖性。
通过遗忘、输入和输出门来控制信息的流动,从而更好地捕捉长期依赖关系。设计用来解决传统RNN存在的梯度消失和梯度爆炸问题。

4.2 优缺点

优点

  • 解决梯度消失和梯度爆炸问题: LSTM 使用了特殊的单元结构,包括输入门、遗忘门和输出门,通过这些门的控制,可以有效地保留长时间的依赖信息。
  • 捕捉长时间依赖关系: LSTM 能够记住和利用长时间间隔的信息,适用于需要长期记忆的任务。
  • 灵活的记忆管理: 通过门控机制,LSTM 能够灵活地添加或移除信息,从而在处理复杂序列数据时表现良好。
  • 广泛适用性: LSTM 适用于各种类型的序列数据,如时间序列、文本和语音数据,具有广泛的应用场景。

缺点

  • 计算复杂度高: LSTM 的单元结构比传统 RNN 复杂,包含更多的参数,计算量较大,训练时间较长。
  • 难以并行化: 由于序列数据的时间步之间的依赖性,LSTM 的训练过程难以并行化,限制了训练效率的提升。
  • 调参复杂: LSTM 模型的超参数较多,如层数、单元数、学习率等,调参过程复杂,需要大量实验来确定最佳参数。

4.3 应用场景

LSTM 和 RNN 的应用场景几乎相同

4.4 和RNN的主要区别

  • 结构上的不同:
    RNN: 传统的 RNN 由简单的循环单元组成,每个循环单元的输出不仅依赖当前输入,还依赖前一个时间步的隐藏状态。
    LSTM: LSTM 的单元更加复杂,包含了遗忘门、输入门和输出门。这些门控机制允许 LSTM 选择性地记住或遗忘信息,从而更好地处理长时间依赖关系。
  • 处理长时间依赖的能力:
    RNN: 由于其简单的结构,RNN 在处理长时间依赖关系时会遇到梯度消失和梯度爆炸的问题,这使得它难以学习和记住长期的信息。
    LSTM: LSTM 通过引入门控机制,有效地缓解了梯度消失和梯度爆炸问题,使其能够捕捉和保留长期依赖关系。
  • 计算复杂度:
    RNN: 由于其较简单的结构,RNN 的计算复杂度相对较低,训练时间较短,但在处理复杂的长时间序列时表现不佳。
    LSTM: LSTM 的单元结构复杂,计算复杂度较高,训练时间较长,但在处理复杂的长时间序列时表现优异。

五、生成对抗网络(GAN)

5.1 结构和原理

包含一个生成器和一个判别器,两者相互对抗、相互学习。
生成器试图生成逼真的数据,而判别器试图区分生成的数据与真实数据,二者在对抗中互相提升

5.2 优缺点

优点

  • 生成高质量样本: GAN 能够生成非常逼真的样本,例如图像、音频和视频,特别是在图像生成任务中表现尤为突出。
  • 无监督学习: GAN 不需要标签数据进行训练,可以利用大量未标注的数据,适用于无监督学习。
  • 灵活性: GAN 的框架灵活,可以用于各种生成任务,如图像到图像的转换、图像修复、超分辨率等。
  • 扩展性强: GAN 结构可以与其他模型结合,如条件 GAN(cGAN)、周期一致性 GAN(CycleGAN)等,拓展其应用范围。

缺点

  • 训练不稳定: GAN 的训练过程往往不稳定,生成器和判别器的平衡很难把握,容易出现模式崩溃(mode collapse)现象,即生成器生成的样本缺乏多样性。
  • 难以调参: GAN 的训练需要仔细调参,包括学习率、网络架构、优化方法等,这使得训练过程复杂且耗时。
  • 缺乏解释性: GAN 的生成过程较难解释,模型的内部工作机制不够透明,难以理解生成器如何产生高质量样本。
  • 计算资源消耗大: GAN 的训练通常需要大量的计算资源,尤其是在生成高分辨率图像时,对硬件要求较高。

5.3 应用场景

  • 图像生成:图像生成: 生成高质量的图像,如人脸生成(例如 StyleGAN)。图像修复: 修复损坏的图像,如去噪、补全缺失部分。图像超分辨率: 提高图像的分辨率,使低分辨率图像变得更加清晰。
  • 图像转换:图像到图像的转换: 例如,将素描转换为照片,将白天场景转换为夜晚场景(CycleGAN)。风格迁移: 将一种图像的风格应用到另一种图像上,如将照片转换为艺术画。
  • 视频生成和处理:视频生成: 生成新的视频内容,例如动画短片。视频修复和增强: 提高视频的质量,如去除噪声、增加分辨率。
  • 文本生成:文本到图像: 将描述性的文本转换为对应的图像(例如 DALL-E)。生成文本数据: 虽然 GAN 更常用于图像,但也可以用于生成文本数据,尽管这方面应用相对较少。
  • 音频处理:音乐生成: 生成新的音乐片段或曲目。语音合成: 生成逼真的语音,如文本到语音转换。
  • 数据增强(扩充): 生成新的样本来扩充训练数据集,提高模型的泛化能力,尤其在医疗图像等领域效果显著。

六、变分自编码器 (VAE)

6.1 结构和原理

VAE 是变分自编码器(Variational Autoencoder)的缩写,是一种生成模型,同时也是一种用于无监督学习的神经网络模型。VAE 由编码器(encoder)和解码器(decoder)两部分组成,它们共同学习如何将输入数据映射到潜在空间(latent space)中的编码,并从潜在空间中的编码中生成数据。

  • 编码器(Encoder): 编码器接收输入数据,并将其映射到潜在空间中的一组潜在变量(latent variables),这些变量表示了输入数据的分布。编码器的输出通常是一组均值向量和方差向量,代表了潜在变量的分布。

  • 潜在变量采样(Sampling): 从编码器输出的均值和方差中采样一组潜在变量,这个过程使得模型能够从潜在空间中随机生成新的样本。

  • 解码器(Decoder): 解码器接收潜在变量作为输入,并将其解码成原始数据的重构。解码器的目标是最大程度地复原输入数据,使得生成的数据与原始数据尽可能接近。

  • 损失函数(Loss Function): VAE 的损失函数由两部分组成:重构损失(reconstruction loss)和 KL 散度(Kullback-Leibler divergence)。重构损失衡量了重构数据与原始数据之间的差异,而 KL 散度衡量了编码器输出的潜在变量分布与预设的标准正态分布之间的差异。

6.2 优缺点

优点

  • 学习潜在表示: VAE 学习到了数据的潜在表示,这使得模型能够生成新的数据,并进行数据插值和变换。
  • 生成高质量样本: VAE 生成的样本通常具有较高的质量,特别是在图像生成任务中表现优异。
  • 无监督学习: VAE 不需要标签数据进行训练,适用于无监督学习任务。
  • 概率性框架: VAE 提供了一个概率性的框架,能够估计数据的分布,并从中采样生成新的样本。

缺点

  • 生成图像模糊: 在某些情况下,VAE 生成的图像可能会出现模糊或模式崩溃现象,导致样本质量下降。
  • 潜在空间连续性: VAE 假设潜在空间是连续的,但实际上可能存在不连续的情况,这可能导致生成样本的不连续性。
  • 训练复杂度高: VAE 的训练通常需要较长的时间,并且对超参数的选择和调整较为敏感。

6.3 应用场景

  • 图像生成:如生成逼真的人脸图像、艺术画作等。
  • 图像插值和变换:如图像修复、图像风格转换等。
  • 文本生成:如生成自然语言文本、对话等。
  • 物体重建:如从图像中重建三维物体形状等。

6.4 和GAN的相似与不同

  • 相似之处
    生成样本: VAE 和 GAN 都是生成模型,都能够生成逼真的样本,例如图像、音频、文本等。
    无监督学习: VAE 和 GAN 都是无监督学习方法,不需要标签数据进行训练,可以利用大量的未标注数据。
    潜在空间表示: VAE 和 GAN 都学习到了数据的潜在表示(latent representation),这使得模型能够进行插值、变换和生成新的样本。

  • 不同之处
    (1)生成方式不同:
    VAE 通过学习数据的潜在分布,然后从该分布中采样生成新的样本。它通过最大化数据的重构概率来训练模型,使得生成的样本能够与原始数据尽可能接近。
    GAN 通过生成器(generator)和判别器(discriminator)之间的对抗训练来生成样本。生成器试图生成逼真的样本,而判别器则试图区分真实样本和生成样本。通过相互对抗的过程,生成器不断提高生成样本的质量,使其难以被判别器区分。
    (2)训练方法不同
    VAE 的训练过程基于最大化观测数据的边际似然下界(ELBO),这可以通过梯度下降等优化算法进行优化。
    GAN 的训练过程是一个零和博弈,需要在生成器和判别器之间进行平衡。通常采用交替训练的方式,先训练生成器,然后固定生成器,训练判别器,反复迭代直至收敛。
    (3)模型结构不同
    VAE 由编码器(encoder)和解码器(decoder)两部分组成,编码器将输入数据映射到潜在空间,解码器从潜在空间中的编码生成原始数据。
    GAN 由生成器和判别器组成,生成器生成逼真的样本,判别器评估样本的真实性。两者相互对抗,不断提升生成器的能力。
    (4)目标函数不同
    VAE 的目标是最大化观测数据的边际似然下界(ELBO),同时最小化编码器输出的潜在分布与先验分布之间的差异(KL 散度)。
    GAN 的目标是最小化生成样本被判别器判别为假的概率,即最大化判别器的损失函数。
    (5)应用场景不同
    VAE 更适合于需要重构能力和潜在空间插值的任务,如图像修复、图像压缩等。
    GAN 更适合于需要生成逼真样本的任务,如图像生成、视频生成等。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/843833.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

15.微信小程序之async-validator 基本使用

async-validator是一个基于 JavaScript 的表单验证库,支持异步验证规则和自定义验证规则 主流的 UI 组件库 Ant-design 和 Element中的表单验证都是基于 async-validator 使用 async-validator 可以方便地构建表单验证逻辑,使得错误提示信息更加友好和…

#笔记#笔记#其他

大鱼论文是一款非常靠谱、方便、值得推荐的论文写作工具。无论是在学术研究中还是在日常写作中,大鱼论文都能够帮助用户轻松完成论文的写作工作。 首先,大鱼论文提供了强大的查重降重功能,能够帮助用户快速定位论文中可能存在的抄袭问题&…

Xcode 15 libarclite 缺失问题

升级到Xcode 15运行项目报错,报错信息如下: SDK does not contain libarclite at the path /Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/lib/arc/libarclite_iphonesimulator.a; try increasing the minimum d…

电力业务模型

电力业务模型 目录概述需求: 设计思路实现思路分析 参考资料和推荐阅读 Survive by day and develop by night. talk for import biz , show your perfect code,full busy,skip hardness,make a better result,wait for change,challenge Survive. happy…

华为超融合数据中心网络【笔记】

对动态流量和海量参数调整,提炼出不同的流量特征模型;在交换机中实时采集流量特征和网络状态,使用独创的iLossless智能无损算法,本地实时决策并动态调整网络参数配置,使得交换机缓存被合理高效利用,实现整网…

基于PHP+MySQL组合开发的720VR全景小程序源码系统 一键生成三维实景 前后端分离带网站的安装代码包以及搭建教程

系统概述 这款源码系统是专门为实现 720VR 全景展示而设计的。它结合了先进的技术和创新的理念,能够将真实场景以全景的形式呈现给用户,让用户仿佛身临其境。该系统采用 PHP 进行后端开发,MySQL 作为数据库管理系统,确保了系统的…

debian 常用命令

Debian 是一个广泛使用的 Linux 发行版,这里列出了一些常用的 Debian 命令,适用于系统管理和日常使用: ### 文件与目录操作 1. **ls** - 列出目录内容: bash ls ls -l # 长格式显示 ls -a # 显示所有文件&#xff…

G60-M60F-ZQ手动抓取快速接头,专用于吊装设备的重物快速抓取

客户需求概述: 客户需要将重达将近400公斤的产品从一个工作台移动至另一个工作台,目前的方法是通过人工将吊环的螺纹与产品的螺纹相互拧紧,然后利用装备吊起移动,但这种方式效率低下,且因为工人的操作有时难以达到理想…

使用vanna实现Text2SQL

这节一起用vanna来实现自然语言转SQL,之前的大模型一直停留在问答阶段,答案基本都是大模型提供的,至多是加点本地知识库,tet,pdf等文档,丰富大模型的内容,但是想要大模型与一些管理系统对接还是…

XDebug配置极简教程,phpstorm实现http请求断点调试

写这篇的文章的初衷:网络上配置XDebug的文章有很多,XDebug也有官方的文档, PhpStorm也有官方的文档,为什么还要写那? 相信不少人,都有一种感觉,虽然教程很多,但是按教程走一遍,自己的确不能正常调试。 问题出在下面几个方面: 1. 对调试过程中,没有一定的认识,因此…

使用ETL读取文件数据并快速写入mysql中

本文介绍使用国产的ETL工具ETLCloud平台来读取文件文件中的数据到mysql数据库中,首先需要安装ETLCloud的社区版本,然后在示例应用中创建一个文件读取流程如下: 点击“流程设计”后打开流程图如下 打开文本文件读取节点配置要读取的文件目录和…

刷代码随想录有感(82):贪心算法——摆动序列

题干&#xff1a; 代码&#xff1a; class Solution { public:int wiggleMaxLength(vector<int>& nums) {if(nums.size() < 1)return nums.size();int prediff 0;int curdiff 0;int res 1;for(int i 0; i < nums.size() - 1; i){curdiff nums[i 1] - nu…

【美羊羊拿金币问题】

问题&#xff1a; 有一天美羊羊正在草地上玩耍&#xff0c;突然天上开始落金币&#xff0c;这些金币掉落的范围在一个固定的水平区域内&#xff0c;但这些金币一旦掉落到地上就消失了&#xff0c;因此美羊羊只有不断地移动并从空中接住这些金币才能得到它们。假设金币掉落的位…

【OCPP】ocpp1.6协议第3.13章节SmartCharging介绍及翻译

目录 3.13 SmartCharging智能充电-概述 智能充电的目标 关键功能 消息类型 负载管理 动态电量配置 总结 3.13 SmartCharging智能充电-译文 3.13.1 Charging Profile Purpose充电配置的目的 3.13.2 Stacking charging profile堆叠充电配置 3.13.3 Combining charging profile pu…

OrangePi AIpro开发板,使用了310B,昇腾310B较于昇腾310有何性能提升?

OrangePi AIpro开发板 他们对应的模组分别是&#xff1a;Atlas 200 AI和Atlas 200I A2 310&#xff1a;基本规格 - Atlas 200 AI加速模块 用户指南 14 - 华为 (huawei.com) 310B&#xff1a;基本规格 - Atlas 200I A2 加速模块 用户指南 04 - 华为 (huawei.com)

java面试(多线程)

线程和进程的区别 程序由指令和数据组成&#xff0c;但这些指令要运行&#xff0c;数据要读写&#xff0c;就必须将指令加载至CPU&#xff0c;数据加载至内存。在指令运行过程中还需要用到磁盘&#xff0c;网络等设备。进程就是用来加载指令&#xff0c;管理内存&#xff0c;管…

详解makefile中addprefix

在 Makefile 中&#xff0c;$(addprefix prefix,names…) 是一个函数&#xff0c;用于将指定的前缀添加到一组空格分隔的文件名中。这个函数通常用于将相同的前缀添加到一组文件名或路径中&#xff0c;非常适合在 Makefile 中进行路径拼接操作。 语法&#xff1a; makefile C…

机器学习-4-模型评估和混淆矩阵和ROC曲线

通透!详解混淆矩阵和ROC曲线 一文彻底理解 ROC/AUC 概念(Python) 参考小白也能看懂的 ROC 曲线详解 参考分类模型的 ROC AUC 是 0.8266,啥意思? 参考ROC曲线绘制(python+sklearn+多分类) 机器学习中的metrics.classification_report函数 1 ROC曲线 ROC曲线是一种坐标图式…

微软提出“Copilot+ PCs”构想,强调本地AI处理;OpenAI暂停ChatGPT语音功能因声音相似争议

&#x1f989; AI新闻 &#x1f680; 微软提出“Copilot PCs”构想&#xff0c;强调本地AI处理 摘要&#xff1a;在微软 Build 开发者前瞻大会上&#xff0c;CEO 萨蒂亚・纳德拉介绍了“Copilot PCs”&#xff0c;一种新类 Windows PC&#xff0c;需配备神经处理单元&#xf…

27快28了,想转行JAVA或者大数据,还来得及吗?

转行到JAVA或者大数据领域&#xff0c;27岁快28岁的年龄完全来得及。我这里有一套编程入门教程&#xff0c;不仅包含了详细的视频讲解&#xff0c;项目实战。如果你渴望学习编程&#xff0c;不妨点个关注&#xff0c;给个评论222&#xff0c;私信22&#xff0c;我在后台发给你。…