【C++】多态:编程中的“一人千面”艺术

目录

  • 一、多态的概念
  • 二、多态的定义及实现
    • 1.多态的构成条件
    • 2.虚函数的重写
      • 2.1 什么是虚函数?
      • 2.2 虚函数的重写是什么?
      • 2.3 虚函数重写的两个例外
      • 2.4 C++11 override 和 final
      • 2.5 重载、覆盖(重写)、隐藏(重定义)的对比
  • 三、抽象类
    • 3.1 概念
    • 3.2 接口继承和实现继承
  • 多态绝命题(超级坑)
  • 四、多态的原理
    • 4.1虚函数表
    • 4.2多态的原理
      • 4.2.1虚基表和虚表
  • 五、单继承和多继承关系的虚函数表
    • 5.1 单继承中的虚函数表
    • 5.2 多继承中的虚函数表
  • 没有彩蛋有🥚

前言

本篇我们来探索一下C++中的多态,欢迎大家和我一起走进多态

一、多态的概念

概念:通俗说就是多种形态,不同的对象去完成同一件事情,会产生不同的结果(多种形态)

例子:就拿买火车票来说,普通人和学生还有军人买票是不一样,普通人买票是全价,学生买票是半价,军人买票是优先买,他们都是人,但是买票的结果不一样,体现了不同的对象干同一件事结果不同

二、多态的定义及实现

1.多态的构成条件

构成多态还有两个条件:

① 被调用的函数必须是虚函数,且派生类必须对基类的虚函数进行重写

② 必须通过基类的指针或者引用调用虚函数

2.虚函数的重写

2.1 什么是虚函数?

虚函数:即被virtual修饰的类成员函数称为虚函数

class Person
{
public://被virtual修饰的函数叫虚函数virtual  void BuyTicke(){cout << "Person->全价" << endl;}
};

2.2 虚函数的重写是什么?

虚函数的重写(覆盖)派生类中有一个跟基类完全相同的虚函数(即派生类虚函数与基类虚函数的返回值类型、函数名字、参数列表完全相同),称子类的虚函数重写了基类的虚函数

代码演示:

class Person
{
public:virtual void BuyTicket(){cout<<"Person->"<<"买票-全价"<<endl;}
};
class Student:public Person
{
public://void BuyTicket()virtual void BuyTicket(){cout<<"Student->"<<"买票-全价"<<endl;}
};
void func(Person& p)//构成多态的必要条件之一,在调用虚函数时必须通过基类的指针或者引用来调用
{p.BuyTicket();
}
int main()
{Person p;Student s;func(p);func(s);return 0;
}

在这里插入图片描述
总结:传Person的对象就调用Person类的虚函数,传Student对象就调用Student类的虚函数,传谁的对象就调用谁对应的虚函数,指向谁调用谁的虚函数

2.3 虚函数重写的两个例外

1.协变
派生类重写基类虚函数时,与基类虚函数返回值类型不同。即基类虚函数返基类对象的指针或者引用,派生类虚函数返回派生类对象的指针或者引用时,称为协变。

class A
{};
class B :public A
{};
class Person
{
public:virtual  A* BuyTicke(){cout << "Person->全价" << endl;}
};
class Student :public Person
{
public:virtual B* BuyTicke(){cout << "Student->半价" << endl;}
};

注意:协变时,相对应的虚函数的返回值要么是指针要么是引用,不能一个指针一个引用,这样不匹配,另外,返回类型要是一对父子类

2.析构函数的重写
如果基类的析构函数为虚函数,此时派生类析构函数只要定义,无论是否加virtual关键字,都与基类的析构函数构成重写,虽然基类与派生类析构函数名字不同。看起来违背了重写的则,其实不然,这里可以理解为编译器对析构函数的名称做了特殊处理,编译后析构函数的名称统一处理成destructor这里也和前面讲的继承那块的析构函数隐藏相呼应

class Person
{
public:~Person() { cout << "~Person()" << endl; }
};
class Student :public Person
{
public:~Student() { cout << "~Student()" << endl; delete[] _ptr;}
private:int* _ptr=new int[10];
};
int main()
{Person* p1 = new Person;Person* p2 = new Student;delete p1;delete p2;return 0;
}

大家看一下上面的代码有什么问题?
在这里插入图片描述
我们的期望是:指向父类调用父类析构,指向子类调用子类析构,这不就正是多态的特性嘛

我们直接让析构函数变成虚函数就可以实现我们的期望了

class Person
{
public://destructor()virtual ~Person() { cout << "~Person()" << endl; }
};
class Student :public Person
{
public://destructor()virtual ~Student() { cout << "~Student()" << endl; delete[] _ptr;}
private:int* _ptr=new int[10];
};

总结:建议析构函数写成虚函数,防止发生内存泄漏的问题

其实除了上面的两个例外还有第三个例外,就是派生类的虚函数可以不加virtual,它也构成重写,但是我们不建议不加,一般还是加上

为什么派生类的虚函数可以不加virtual呢?

正所谓重写,子类是继承了对应虚函数的声明(函数名参数返回值等),只是重写了它的定义,所以不加也可以

2.4 C++11 override 和 final

C++11提供了override和final两个关键字,可以帮助用户检测是否重写。

1.final:修饰虚函数,表示该虚函数不能被重写

class Car
{
public:virtual void Drive() final {}
};
class Benz :public Car
{
public:virtual void Drive() { cout << "Benz-舒适" << endl; }//这里直接报红色波浪线了,上面已经用final修饰虚函数了,所以他不能被重写
};

final修饰类,叫最终类,表示该类不能被继承(了解一下)

2.override: 检查派生类虚函数是否重写了基类某个虚函数,如果没有重写编译报错

class Car {
public:virtual void Drive() {}
};
class Benz :public Car {
public:virtual void Drive() override { cout << "Benz-舒适" << endl; }
};

通俗来说,这个override就是用来帮助我们检查这个虚函数有没有被正确重写

2.5 重载、覆盖(重写)、隐藏(重定义)的对比

在这里插入图片描述
在这里插入图片描述

三、抽象类

3.1 概念

在虚函数的后面写上 =0 ,则这个函数为纯虚函数。包含纯虚函数的类叫做抽象类(也叫接口类),抽象类不能实例化出对象。派生类继承后也不能实例化出对象,只有重写纯虚函数,派生类才能实例化出对象。纯虚函数规范了派生类必须重写,另外纯虚函数更体现出了接口继承。

class Car//包含纯虚函数的类就是抽象类--抽象类不能被实例化
{
public:virtual void Drive() = 0;//纯虚函数
};

在这里插入图片描述

3.2 接口继承和实现继承

普通函数的继承是一种实现继承,派生类继承了基类函数,可以使用函数,继承的是函数的实现。虚函数的继承是一种接口继承,派生类继承的是基类虚函数的接口,目的是为了重写,达成多态,继承的是接口。所以如果不实现多态,不要把函数定义成虚函数。

多态绝命题(超级坑)

class A
{
public:virtual void func(int val = 1) { std::cout << "A->" << val << std::endl; }virtual void test() { func(); }
};class B : public A
{
public:void func(int val = 0) { std::cout << "B->" << val << std::endl; }
};int main(int argc, char* argv[])
{B* p = new B;p->test();return 0;
}//A: A->0 B: B->1 C: A->1 D: B->0 E: 编译出错 F: 以上都不正确

首先说一下,这道题选B,大家一定觉得很奇怪,我做的时候选的D,我们现在一起来看一下他为什么选B

在这里插入图片描述

四、多态的原理

4.1虚函数表

class Base
{
public:virtual void Func1(){cout << "Func1()" << endl;}
private:int _b = 1;
};
int main()
{cout<<sizeof(Base)<<endl;return 0;
}

这里计算Base类的大小,在x86的环境下计算的结果是8,在我们之前的认知里,类对象模型中,类不应该是把成员函数放在了公共的代码段区域吗,成员函数不在类里面,不参与计算,只需要计算他的成员变量就行,按理来说的话这里的计算结果应该是4

那我们就来看一下他为什么会计算出8这个结果来
在这里插入图片描述

通过调试我们可以看到,b对象里面不仅有成员_b而且还有一个_vfptr,这个_vfptr又是干什么的呢?b对象中的这个_vfptr我们叫做虚函数表指针(v代表virtual,f代表function),在x86环境下,一个指针的大小是4个字节,加上这个int类型的_b,算上内存对齐的规则,它们刚好是8个字节

一个含有虚函数的类中都至少都有一个虚函数表指针,因为虚函数的地址要被放到虚函数表中,虚函数表也简称虚表

4.2多态的原理

class Person {
public:virtual void BuyTicket() { cout << "买票-全价" << endl; }
protected:int _p = 1;
};
class Student : public Person {
public:virtual void BuyTicket() { cout << "买票-半价" << endl; }
protected:int _s = 2;
};
void Func(Person& p)
{p.BuyTicket();
}
int main()
{Person Mike;Func(Mike);Student Johnson;Func(Johnson);return 0;
}

多态调用:
运行时,到指向对象的虚表中找虚函数调用,指向父类调用父类的虚函数,指向子类调用子类的虚函数
在这里插入图片描述
我们转到反汇编看
在这里插入图片描述
call eax中存虚函数的指针。这里可以看出满足多态的调用,不是在编译时确定的,是运行起来
以后到对象的中取找的。

普通调用:
编译时,调用对象是那个类型,就调用它的函数
在这里插入图片描述
普通调用在编译链接时就已经确定了call地址,首先BuyTicket虽然是虚函数,但是Mike是对象,不满足多态的条件,所以这里是普通函数的调用转换成地址时,是在编译时已经从符号表确认了函数的地址,直接call地址

4.2.1虚基表和虚表

虚表(虚函数表):存放的是虚函数的地址,目标是实现多态
虚基表:存的是当前位置距离虚基类部分的偏移量,目的是为了解决菱形继承数据冗余和二义性问题

注意:

问题1:虚函数存在哪?

虚函数和普通函数一样,都是存在代码段(常量区)中,不是存在虚函数表中,虚函数表中仅仅存放的是虚函数的地址

问题2:虚表存在那个区域?
我们打印出各个区域的数据地址来观察一下,虚表和那个区域的地址最接近,以此来判断虚表存在那个区域

class Person {
public:virtual void BuyTicket() { cout << "买票-全价" << endl; }
};
class Student : public Person {
public:virtual void BuyTicket() { cout << "买票-半价" << endl; }
};
int main()
{int i = 0;static int j = 1;int* p1 = new int;const char* p2 = "xxxxxxxx";printf("栈:%p\n", &i);printf("静态区:%p\n", &j);printf("堆:%p\n", p1);printf("常量区:%p\n", p2);Person p;Student s;Person* p3 = &p;Student* p4 = &s;printf("Person虚表地址:%p\n", *(int*)&p);printf("Student虚表地址:%p\n", *(int*)&s);return 0;
}

在vs x86的环境下,_vfptr存放在头四个字节的位置, 我们取出Person类对象的地址,然后将其强制转化为int类型,再解引用得到头四个字节的数据,就可以取到第一个元素的地址,也就是虚函数表指针的地址
在这里插入图片描述
根据运行得到的结果可知,虚函数表的地址和常量区最接近,所以虚函数表应该存放在常量区

五、单继承和多继承关系的虚函数表

5.1 单继承中的虚函数表

以下面的代码为例来进行分析:

class Base
{
public:virtual void Func1(){ cout << "Base::Func1()" << endl; }virtual void Func2(){ cout << "Base::Func2()" << endl; }void Func3(){ cout << "Base::Func3()" << endl; }
private:int _b = 1;
};
class Derive : public Base
{
public:virtual void Func1(){ cout << "Derive::Func1()" << endl; }virtual void Func4() { cout << "Derive::Func4()" << endl; }
private:int _d = 2;
};

我们调试来观察一下虚表中有哪些变化
在这里插入图片描述
①基类b对象和派生类d对象虚表是不一样的,这里我们发现Func1完成了重写,所以d的虚表中存的是重写的Derive::Func1,所以虚函数的重写也叫作覆盖,覆盖就是指虚表中虚函数的覆盖。重写是语法的叫法,覆盖是原理层的叫法

②另外Func2继承下来后是虚函数,所以放进了虚表,Func2没有重写,所以派生类的虚表中依旧是Base::Func2,Func3也继承下来了,但是不是虚函数,所以不会放进虚表

③总结一下派生类的虚表生成:
a.先将基类中的虚表内容拷贝一份到派生类虚表中
b.如果派生类重写了基类中某个虚函数,用派生类自己的虚函数覆盖虚表中基类的虚函数
c.派生类自己新增加的虚函数按其在派生类中的声明次序增加到派生类虚表的最后

为什么Derive自己的虚函数Func4没有在虚函数表指针中看见?

在这里插入图片描述

通过调试观察内存窗口,我们可以看到_vfptr地址下肯定是存放了Derive::Func1Base::Func2的地址的,它下面还有一个地址00b014c9,我们不确定这个地址是不是Func4的地址,我们现在来验证一下我们的猜想

//函数指针
typedef void (*VFPTR) ();
//依次取虚表中的虚函数指针打印并调用。调用就可以看出存的是哪个函数
void PrintVFT(VFPTR* vft)
{for (size_t i = 0; i < 3; i++){printf("%p->", vft[i]);VFPTR pf = vft[i];(*pf)();//pf();调用函数}
}
int main()
{Base b;Derive d;//函数指针数组VFPTR p[4];VFPTR* ptr = (VFPTR*)(*(int*)(&d));PrintVFT(ptr);return 0;
}

PrintVFT函数的思想:
在这里插入图片描述
我们可以通过这个函数来打印出_vfptr中的存放的那个地址到底是不是Func4
在这里插入图片描述
事实上,第三个位置存放的就是Func4的地址,只是vs只显示前两个,咱也不知道为什么,你也可以认为这是vs下的一个bug

总结:单继承虚函数对象模型如下
在这里插入图片描述
补充:

同类型的对象的虚表是同一个虚表
在这里插入图片描述

5.2 多继承中的虚函数表

以下面代码为例来讲解:

class Base1 {
public:virtual void func1() { cout << "Base1::func1" << endl; }virtual void func2() { cout << "Base1::func2" << endl; }
private:int b1;
};
class Base2 {
public:virtual void func1() { cout << "Base2::func1" << endl; }virtual void func2() { cout << "Base2::func2" << endl; }
private:int b2;
};
class Derive : public Base1, public Base2 {
public:virtual void func1() { cout << "Derive::func1" << endl; }virtual void func3() { cout << "Derive::func3" << endl; }
private:int d1;
};
int main()
{Derive d;return 0;
}

在监视窗口下我们来看一下对象d的结构,我们发现他有两个虚函数表,两个直接父类各自都有一个虚函数表,那Derive 类自生的虚函数func3应该存放在那个虚函数表中呢?
在这里插入图片描述
我们还是和之前一样,把虚函数打印出来看看,func3到底存在了那个虚表中,我们发现打印第一个虚函数表容易,但是第二个不好打印

下面提供两种方法打印第二个虚表的內容:
方法1:
VFPTR* vTableb2 = (VFPTR*)(*(int*)((char*)&d + sizeof(Base1)));

(char*)&d – 先取出d整体的地址来,然后强转成char*类型,这样+N就跳过N个字节,再+sizeof(Base1),加上Base1大小的字节,就可以跳过Base1,到Base2的位置,后面的操作就和以前的一样

缺陷:
这个方法有个缺陷,就是万一跳过Base1之后,后面紧挨着的不是Base2的地址怎么办,说不定有别的变量在Base1后面挨着,我们的方法2,就可以完美避开这个缺陷

方法2:
Base2* ptr = &d;
VFPTR* vTableb2 = (VFPTR*)(*(int*)ptr);

Base2* ptr = &d – 这一步直接就是取出d整体的地址,然后赋值给Base2的指针ptr,这里就发生了切片,ptr直接就是指向了Base2处,然后再进行之前的这个操作(VFPTR*)((int)ptr)就🆗的很
在这里插入图片描述

看打印的结果我们可以知道,Derive自己的虚函数func3放在了第一个继承的父类虚函数表中
在这里插入图片描述
所以多继承对象虚函数模型大体都是下面这样
在这里插入图片描述


没有彩蛋有🥚

来个小题收收尾

class A{
public:A(char *s) { cout<<s<<endl; }~A(){}
};
class B:virtual public A
{
public:B(char *s1,char*s2):A(s1) { cout<<s2<<endl; }
};
class C:virtual public A
{
public:C(char *s1,char*s2):A(s1) { cout<<s2<<endl; }
};
class D:public B,public C
{
public:D(char *s1,char *s2,char *s3,char *s4):B(s1,s2),C(s1,s3),A(s1){ cout<<s4<<endl;}
};
int main() {D *p=new D("class A","class B","class C","class D");delete p;return 0;
}

在这里插入图片描述

这题我们首先就可以排除B,C,对于派生类对象来说,在构造时,遵循的原则是先父后子,所以不可能最后初始化A,至于初始化class B和class C的顺序肯定是按照继承的顺序来,所以选A


多态暂且到这里,我后续会继续进行补充,谢谢大家的观看哦✋

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/842429.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

重学java 47.集合 ② 迭代器

金榜题名&#xff0c;前程似锦 —— 24.5.27 一、迭代器的介绍和使用 1.概述 Iterator接口 2.主要作用 遍历集合 3.获取 Collection中的方法&#xff1a; Iterator<E> iterator() 4.方法 boolean hasNext() —> 判断集合中有没有下一个元素 E.next() —> 获取下一个…

《QT实用小工具·六十六》基于QT开发的界面收缩栏

1、概述 源码放在文章末尾 该项目实现了一个界面收缩栏的效果&#xff0c;该收缩栏包含如下功能&#xff1a; 1、可以在收缩栏中添加若干个界面 2、鼠标点击收缩栏可以展开或收起界面 3、鼠标拖动收缩栏可以和其他界面互换位置 项目demo演示如下所示&#xff1a; 使用方式&…

jenkins 用户权限(Manage-Roles)

本次需求将DEV环境和SIT环境分开,SIT用户登录上来只能看他的SIT项目和视图 安装roles插件 进入 manage role 项目授权 用户 正则匹配你需要的项目 dev .*-dev*或者.*-dev$ sit .*-sit最后细分assign role 测试使用sit账号登录 ,视图和项目都是SIT账号的

移动云:开发者手中的未来钥匙

《移动云&#xff1a;开发者手中的未来钥匙》 引言一、无缝集成&#xff0c;加速开发进程二、数据智能&#xff0c;洞悉用户心声三、安全合规&#xff0c;护航创新之旅四、成本优化&#xff0c;助力轻装前行总结 引言 在科技日新月异的今天&#xff0c;移动云已成为推动行业变革…

kube-apiserver内存占用过多 go tool pprof 入门

目录 环境问题排查1、kube-apiserver %CPU 146 正常&#xff0c;%MEM 高达70&#xff0c;&#xff0c;load average 400&#xff0c;出现kswapd0进程。2、k describe node 看到 SystemOOM3、是否大量连接导致&#xff1f;4、通过prom查看指标5、访问K8s API6、pprof 火焰图 解决…

云服务器购买之后到部署项目的流程

1.通过账号密码登录百度智能云控制台; 2.进入对应的服务器‘云服务器BBC’ 找到’实例‘即找到对应的服务器列表; 此时通过本地电脑 1.cmd命令提示符 PING 服务器公网地址不通&#xff1b; 2.通过本地电脑进行远程桌面连接不通 原因&#xff1a;没有关联安全组&#xff0c;或者…

Linux的nload/nettraf命令实时网卡流量监测

对于linux的网卡上下行流量监测方法有很多 例如nload 现成的nload命令 现成的有 nload 安装 yum -y install nload 查看所有网卡实时网速 sudo nload -m 按enter/上下翻页键即可切换网卡 查看指定网卡实时网速 sudo nload eth0 -m 基于nettraf编译的rpm包 当然也可以你…

MySQL:如果用left join的话,左边的表一定是驱动表吗

一、前言 在日常开发过程中关于MySQL的优化方面&#xff0c;我们知道小表驱动大表原理。例如left join&#xff0c;放在左边的表作为驱动表。但是用left join的话&#xff0c;左边的表一定是驱动表吗&#xff0c;本文将通过案例分析给出详细分析。 二、概念 在MySQL中&#xf…

Android开发 -- JNI开发

1.配置JNI环境 创建JNI文件夹 在项目的主目录中创建一个名为 JNI 的文件夹。这个文件夹将包含所有的本地源代码和配置文件。 编写Android.mk文件 这个文件是一个 Makefile&#xff0c;用来指导 NDK 如何编译和构建本地代码。 #清除之前定义的变量&#xff0c;确保每个模块的…

安装HAP时提示“code:9568344 error: install parse profile prop check error”错误

问题现象 在启动调试或运行应用/服务时&#xff0c;安装HAP出现错误&#xff0c;提示“error: install parse profile prop check error”错误信息。 解决措施 该问题可能是由于应用使用了应用特权&#xff0c;但应用的签名文件发生变化后未将新的签名指纹重新配置到设备的特…

[Java EE] 网络编程与通信原理(三):网络编程Socket套接字(TCP协议)

&#x1f338;个人主页:https://blog.csdn.net/2301_80050796?spm1000.2115.3001.5343 &#x1f3f5;️热门专栏:&#x1f355; Collection与数据结构 (92平均质量分)https://blog.csdn.net/2301_80050796/category_12621348.html?spm1001.2014.3001.5482 &#x1f9c0;Java …

BookStack VS HelpLook两款知识库软件的区别

现在很多企业都会进行知识管理&#xff0c;在这个过程中&#xff0c;选择一个合适的知识库软件是一个不可避免的问题。在众多知识库软件中&#xff0c;HelpLook和BookStack这两款软件备受企业瞩目。不知如何选择&#xff0c;今天LookLook同学就简单介绍一下这两款知识库的区别&…

5.27作业

定义自己的命名空间my_sapce&#xff0c;在my_sapce中定义string类型的变量s1&#xff0c;再定义一个函数完成对字符串的逆置。 #include <iostream>using namespace std; namespace my_space {string s1;string reverse1(string s1);} using namespace my_space; int m…

深入解读 ChatGPT 的基本原理(个人总结版)

引言 背景 人工智能&#xff08;AI&#xff09;技术自20世纪中期诞生以来&#xff0c;经历了多次革新和进步。从最早的图灵测试&#xff0c;到20世纪末的深蓝计算机击败国际象棋冠军&#xff0c;再到21世纪初谷歌AlphaGo击败围棋冠军&#xff0c;AI技术的飞速发展改变了人们的…

BEVFormer论文详细解读

文章目录 1. 前言1.1 3D VS 4D1.2 .特征融合过程中可能遇到的问题1.3 .BEV提出背景1.4 .BEV最终得到了什么1.5 .输入数据格式 2. 背景/Motivation2.1 为什么视觉感知要用BEV&#xff1f;2.2 生成BEV视角的方法有哪些&#xff1f;为何选用Transformer呢&#xff1f; 3. Method/S…

Vapor Mode:Vue.js 的速度与激情,代码界的闪电侠

大家好&#xff0c;我是宝哥。 在快速发展的网络开发世界中&#xff0c;创新的Vue.js团队给我们带来了Vapor Mode。这个新模式优化了Vue的核心渲染过程&#xff0c;帮助我们的应用程序像轻烟一样运行&#xff0c;开发者无需深入复杂的优化工作。 在这篇文章中&#xff0c;我们将…

【微积分】Grant Sanderson

梯度&#xff1a;将各个偏导打包 定义&#xff1a;direction of steepest ascent 梯度向量的长度&#xff1a;最速上升方向的陡峭程度 方向导数&#xff1a;偏导的一种拓展 【托马斯微积分学习日记】13.1-线积分_哔哩哔哩_bilibili 概述 16.1line integrals of scalar funct…

直播预告:TinyVue 组件库实战解析,提升组件库构建技能!

在复杂的编码世界里&#xff0c;大家总希望能够寻找更高效、更简洁的解决方案来优化工作流程&#xff0c;提升开发效率。在5月28日晚7点 OpenTiny B站直播间&#xff0c;OpenTiny 非常荣幸地为大家带来一场关于 TinyVue 组件库实战分享的直播。届时&#xff0c;TinyVue 组件库成…

openEuler系统通过shell脚本安装openGauss 5.0.0企业版

上次提到的开机自启动的配置&#xff0c;获得了LD的称赞&#xff0c;然而LD的要求&#xff0c;都是“既得陇复望蜀”的&#xff0c;他又期望我们能实现openGauss安装的“自动化”&#xff0c;于是尝试了下用shell脚本部署&#xff0c;附件中的脚本实测有效&#xff0c;openEule…

图论(二)-图的建立

引言&#xff1a; 建图&#xff0c;将图放进内存的方法 常用的建图方式&#xff1a;邻接矩阵&#xff0c;邻接链表&#xff0c;链式前向星 一、邻接矩阵 通过一个二维数组即可将图建立&#xff0c;邻接矩阵&#xff0c;考虑节点集合 &#xff0c;用一个二维数组定义邻接矩…