C语言之指针初阶


目录

前言

一、内存与地址的关系

二、指针变量

三、野指针

四、const

五、传值调用与传址调用

总结


前言

        本文主要介绍C语言指针的一些基础知识,为后面深入理解指针打下基础,因此本文内容主要包括内存与地址的关系,指针的基本语法,指针运算,野指针,还有const修饰指针和assert断言的使用,最后还会讲到指针的传址调用,希望对大家有所帮助。


一、内存与地址的关系

指针作为C语言的核心知识,那么指针究竟是什么呢?

  1. 首先指针其实就是地址,而地址是内存中一个个内存单元的编号
  2. 我们知道计算机上CPU(中央处理器)在处理数据的时候,需要的数据是在内存中读取的,处理后的数据也会放回内存中,那我们买电脑的时候,电脑上内存有8GB/16GB/32GB等,这些内存就是程序运行时需要用到的内存
  3. 为了更高效的管理与使用这些内存,于是就将这些内存分为一个个内存单元,每个内存单元的大小取一个字节,也就是8个比特位,⼀个比特位可以存储一个2进制的位1或者0
  4. 每个内存单元也都有一个编号,有了这个内存单元的编号,CPU就可以快速找到一个内存空间,在计算机中我们把内存单元的编号也称为地址。C语言中给地址起了新的名字:指针
  5. 所以我们可以这样理解:内存单元的编号 == 地址 == 指针

如图:


二、指针变量

指针变量就是储存地址的变量

1. 取地址操作符  &

&操作符是一个单目操作符,用来取出一个变量的地址

比如,创建 int a,观察其地址

图中画红线的部分就为a变量在内存中的地址以及储存的数据,即0x004FF82C为地址,0a 00 00 00为以16进制储存的数据,其中 0a 表示的就是以16进制保存的十进制数字10,因为一个16进制数需要4个比特位表示,0a就是两个16进制数,占了8个比特位刚好为一个字节,而0a 00 00 00 四个这样的就刚好表示4个字节,至于为什么0a在前面,这是编译器自己的规则


2.指针变量创建

对于一般的指针变量的创建

(类型) * 变量名;

这样就将变量 a ,b 的地址存储在对应类型的指针变量里面,其余的如float、double等可以以此类推

注意:这里的*号表示其变量为指针变量,它是与变量名结合,前面的类型是指针变量的类型,它与指针访问地址时的权限大小有关(后面有讲)


3.解引用操作符  *

* 解引用操作符为一个单目操作符,它可以通过地址找到其对应的数据

因为指针变量存储的就是地址,所以指针变量搭配*就可以找到其对应的数据进行操作

如:

我们可以通过解引用操作符修改指针对应的变量数据


4.指针变量类型的意义

指针变量的大小和类型无关,只要是指针变量,在同一个平台下,大小都是一样的,比如在32位平台上指针类型的变量大小都是4个字节,64位平台上为8个字节(以下在32位上演示)

既然指针变量的大小和类型无关,那么指针变量的类型有什么意义呢?

其实,这个意义非常重要:指针的类型决定了,对指针解引用的时候有多大的权限(一次能操作几个字节)。比如: char* 的指针解引用就只能访问⼀个字节,而 int* 的指针的解引用就能访问四个字节,这个权限的大小就是指针变量类型的大小

如:我们再次创建一个变量a。(注:程序每次运行时分配的地址不一样)

除了a变量的地址不一样,其他和上面一样为 0a 00 00 00,它表示的是10,并且每两位表示一个字节,而一个字节表示一个内存单元,因此如上的0x0099FC8C其实表示的是储存0a的地址,我们可以一列一列的观察其内存

因为a为整形变量,占4个字节,因此其在内存中为4个连续的内存单元,如上标记的区域,此时如果我们创建一个整形指针变量接收a的地址,这时候指针变量接收的其实是a在内存中的连续区域的首地址,我们解引用该指针就可以操作这四个字节

注:指针存储一个大于1字节的数据时,存储的是该数据在内存中的首地址

如:

注:90 01 00 00 在读取时是以 00000190,也就是190,为16进制

十进制刚好为400

此时变量a可以被正常修改,而如果我们以字符类型的指针接收a的地址后,我们一次只能修改一个字节

如:

16进制28等于十进制40,如上我们貌似也能正常修改整形变量a的数组,但实际上只要我们修改的数值大于两位16进制能表达的最大数字,就不能正常修改a的数值

如:

我们只能改变一个字节,也就是char类型的指针一次只能修改一个字节

这就是指针类型的意义,当然不止如此,指针变量的类型还决定了指针加减整数的时候一次跳过多少字节,下面就会讲到


5.指针 + - 整数

先说结论:指针加减整数,会使指针前进或后退n个字节,而指针的类型决定了指针向前或者向后走一步有多大(距离)

也就是说,指针类型决定了指针加减1时的步长,比如char*指针,它一次只能跳过一个字节,它加减n也就是向前或向后跳过n*sizeof(char)个字节

比如:

(注:此处int *parr = arr不能写成&arr,下篇指针进阶文章我会讲到) 

此处我们就利用了循环来使数组首元素地址依次跳过 i个int类型大小的字节,实现了循环打印数组元素

此处我们有几处需要注意的点:

  1. 数组的元素在内存中是连续存放的,并且地址由低到高,不了解的可以参考我主页的数组文章
  2. 此处我们发现,如果把 *(arr+i) 换成 arr[ i ] 也就是我们之前的写法达到的效果是一样的,这是因为 *(arr+i) 是完全等价于 arr[ i ] ,也就是说,当编译器遇到 arr[ i ] 时会把它解读为 *(arr+i),按这样理解,因为 arr+i 等于 i+arr ,也就是可以写成 *(i+arr),进而可以写成 i[arr] ,我们可以验证一下
  3. 答案是完全可以的,但是平时不建议这样写,因为 i[arr] 可读性不如 arr[ i ]。总结就是 [ ] 操作符其实也是解引用的效果,只不过多了加法的作用


6.指针 - 指针

对于指针 - 指针这个运算来说,只有两指针指向的是同一块连续的内存区域时才有意义

我们可以通过指针 - 指针来计算数组两元素地址之间有多少个元素

如:

那么为什么是9个而不是10个呢?

我们可以画图来理解:

画图我们就可以很直观的感受到,arr[9] 的元素没有被计算到,因为如果指针指向的数据大小大于一个字节,那么指针储存的该数据地址为该数据储存在内存中的首地址,参考上文中的 int a 变量的地址观察


三、野指针

1.概念

野指针就是指针指向的位置是不可知的(随机的、不正确的、没有明确限制的)。

野指针成因:

  1. 指针未初始化:主要是创建在函数中的指针变量没有进行初始化,造成指针指向的地址是随机值,此时指针指向的地址随机,不能对其进行解引用。
  2. 指针越界访问:这种主要出现在数组中,指针指向的地址超出了数组所在的内存区域,指向了一个不确定的地址
  3. 指针指向的空间被释放:这种主要发生在指针变量指向的地址是已经被释放的内存空间地址,被释放的空间不属于该程序,虽然可能引用不会导致报错,但是不安全


2.如何规避野指针

野指针的危害有:访问违规、数据损坏、内存泄露、安全风险等。

野指针的危害众多、因此我们的代码中需要规避野指针,那么如何规避野指针呢?

  1. 指针变量初始化时如果没有需要赋值的地址就先赋值为NULL
  2. 指针变量不再使用时,及时置NULL,指针使用之前检查有效性:当指针变量指向一块区域的时候,我们可以通过指针访问该区域,后期不再使用这个指针访问空间的时候,我们可以把该指针置为NULL。因为约定俗成的⼀个规则就是:只要是NULL指针就不去访问, 同时使用指针之前可以判断指针是否为NULL。
  3. 避免返回局部变量的地址,比如避免函数返回局部变量地址

除了以上的方法,还有一个常用的方法:

assert 断言

assert.h 头文件定义了宏 assert() ,用于在运行时确保程序符合指定条件,如果不符合,就报错终止运行。这个宏常常被称为“断言”

比如:assert (p != NULL);

上面代码在程序运行到这一行语句时,验证变量 p 是否等于 NULL 。如果确实不等于NULL 继续运行,否则就会终止运行,并且给出报错信息提示。

程序 assert() 宏接受⼀个表达式作为参数。如果该表达式为真(返回值非零), assert()不会产生任何作用,程序继续运行。如果该表达式为假(返回值为零), assert() 就会报错,在标准错误流 stderr 中写入一条错误信息,显示没有通过的表达式,以及包含这个表达式的文件名和行号。

如:

assert() 的使用对程序员是非常友好的,使用 assert() 有几个好处:它不仅能自动标识文件和出问题的行号,还有一种无需更改代码就能开启或关闭 assert() 的机制。如果已经确认程序没有问 题,不需要再做断言,就在 #include <assert.h>语句的前面,定义一个宏 NDEBUG

如下assert()就会失去作用:

如果想再次启用assert()只需要注释掉第一行的宏就行

assert() 的缺点:因为引入了额外的检查,增加了程序的运行时间。 一般我们可以在 Debug 中使用,在 Release 版本中选择禁用 assert 就行,在 VS 这样的集成开发环境中,Release 版本中,assert()直接就是自动优化掉了。这样在debug版本写有利于程序员排查问题,在Release 版本不影响用户使用时程序的效率。


四、const

const的作用:被const修饰的变量不能被直接修改

如:

程序在还未运行时已经发出错误警告

虽然不能直接修改,但是还能通过指针变量间接修改:


但是如果const修饰的是指针变量,就分以下两种情况:

  • const如果放在*的左边,修饰的是指针指向的内容,保证指针指向的内容不能通过指针来改变。 但是指针变量本身的内容可变。
  • const如果放在*的右边,修饰的是指针变量本身,保证了指针变量的内容不能修改,但是指针指向的内容,可以通过指针改变。

如:


五、传值调用与传址调用

传值调用与传址调用,这个主要针对的是自定义函数的参数,也就是说:

  1. 函数参数为非指针类型,调用时传入非指针类型参数,即为传值调用
  2. 函数参数为指针类型,调用时传给函数地址,即为传址调用

那么这两个有什么区别呢?

其实主要是传值调用时,在函数内部修改形参不会影响实参,而在传址调用时,修改形参也同样会会修改实参

比如这个例题:编写一个函数,交换两个整形变量的内容

此前我们在主函数中只需要再创建一个变量,通过三者交换即可达成题目这样的效果,但如果我们在自定义函数里面,函数参数为两个整形变量,分别接收需要交换内容的两个实参,使用一样的方法是达不到一样的效果的,这时候我们只需要使用传址调用即可

如:

通过传给函数实参的地址,在函数中用指针变量的形参接收,就可以在函数中解引用该指针变量来修改对应的实参变量的内容

这就是传值调用与传址调用的不同

另外,如果函数的参数为数组类型,其实也是指针变量,给函数传参时,一般传入的就是数组名,因为数组名就是数组首元素的地址,至于详细原因我会在指针进阶中讲到


总结

        以上就是本文的全部内容,希望对大家有所帮助,下一篇我会继续写指针的进阶篇,感谢大家的支持

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/838638.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

WebRTC实时音视频通话之语音通话设计与实践

一、背景 在移动互联网流量时代&#xff0c;很多业务场景都有音视频通信的需求&#xff0c;比如IM场景&#xff0c;除了文字交流还需要音视频通话进行实时交互。为了帮助58、赶集、安居客等业务线更好的为用户提供服务&#xff0c;节约沟通成本&#xff0c;提升效率&#xff0…

【Linux】19. 习题②

2022-11-12_Linux环境变量 1. 分页存储(了解) 一个分页存储管理系统中&#xff0c;地址长度为 32 位&#xff0c;其中页号占 8 位&#xff0c;则页表长度是__。 A.2的8次方 B.2的16次方 C.2的24次方 D.2的32次方 【答案解析】A 页号即页表项的序号&#xff0c;总共占8个二进制…

STM32的FLASH学习笔记

不同型号的 STM32&#xff0c;其 FLASH 容量也有所不同&#xff0c;最小的只有 16K 字节&#xff0c;最大的则达到了1024K 字节。大容量产品的闪存模块组织如图所示&#xff1a; STM32 的闪存模块由&#xff1a;主存储器、信息块和闪存存储器接口寄存器等 3 部分组成。 ​ ①主…

Java环境搭建(二)Notepad++和IDEA的下载

Notepad&#xff08;不推荐使用&#xff09; 高级记事本 下载地址 Notepad (juxinwk1.cn) 下载安装后一直下一步就可以了 注&#xff1a;改一下路径还有建立快捷方式&#xff08;自己选择&#xff09; IDEA 集成环境 下载地址 IntelliJ IDEA – the Leading Java and Kotl…

React 第三十二章 虚拟DOM

面试题&#xff1a;什么是虚拟DOM&#xff1f;其优点有哪些&#xff1f; 标准且浅显的答案 虚拟dom本质上就是一个普通的 JS 对象&#xff0c;用于描述视图的界面结构 虚拟 DOM 最早是由 React 团队提出来的&#xff0c;因此 React 团队在对虚拟 DOM 的定义上面有绝对的话语权。…

若依-生成主子表

1. sql语句建表导入到数据库中&#xff1a; -- ---------------------------- -- Table structure for t_ques————主表 -- ----------------------------CREATE TABLE ques (ques_id INT NOT NULL AUTO_INCREMENT COMMENT Id,name VARCHAR(255) NOT NULL COMMENT 测评名称…

未授权访问:Rsync 未授权访问漏洞

目录 1、漏洞原理 2、环境搭建 3、未授权访问 4、利用rsync下载任意文件 5、利用rsync反弹shell 防御手段 今天继续学习各种未授权访问的知识和相关的实操实验&#xff0c;一共有好多篇&#xff0c;内容主要是参考先知社区的一位大佬的关于未授权访问的好文章&#xff0c…

ApiHug - 闭门造车, 出门合辙

&#x1f917; ApiHug {Postman|Swagger|Api...} 快↑ 准√ 省↓ GitHub - apihug/apihug.com: All abou the Apihug apihug.com: 有爱&#xff0c;有温度&#xff0c;有质量&#xff0c;有信任ApiHug - API design Copilot - IntelliJ IDEs Plugin | Marketplace The Nex…

RocketMQ:新增consumer消费组group从最新消息开始消费skip last offset message

场景 想创建一个新的consumer去消费一个已经再使用的topic时&#xff0c;默认情况下会从topic中的第一条消息开始消费&#xff0c;大多数情况是需要从最新的消息开始。然后再使用CONSUME_FROM_LAST_OFFSET设置时并不会对新的consumer生效&#xff0c;它只是在停用consumer重新启…

MySQL单表查询案例演示

目录 一、创建数据库lianxi 二、选择数据库为lianxi 三、新建一个数据表grade&#xff0c;在grade表中插入数据 四、开始进行查询操作&#xff08;验证表中数据&#xff09; 1、查询1945班的成绩信息 2、查询1945班&#xff0c;语文成绩大于60小于90的成绩信息 3、查询学…

优雅谈论大模型8:神经网络与矩阵

向量与矩阵 上个章节的神经网络是为了解Transformer或者Mamba做好铺垫&#xff0c;在和后辈交流过程中发现有个障碍&#xff0c;那就是向量和矩阵。其实向量和矩阵的表达方式不是所有人都很习惯。在继续下面的章节之前小编认为有必要将向量、矩阵和神经网络做下补充解释。 向…

18.双线性插值缩放算法的matlab与FPGA实现

一篇文章为你讲透双线性插值 简介 1.什么是插值 图片放大是图像处理中的一个特别基础的操作。几乎在每一个图片相关的项目中&#xff0c;从传统图像处理到i深度学习&#xff0c;都有应用。   简单来说&#xff0c;插值指利用已知的点来“猜”未知的点&#xff0c;图像领域插…

华为OD机试【分奖金】(java)(100分)

1、题目描述 公司老板做了一笔大生意&#xff0c;想要给每位员工分配一些奖金&#xff0c;想通过游戏的方式来决定每个人分多少钱。按照员工的工号顺序&#xff0c;每个人随机抽取一个数字。按照工号的顺序往后排列&#xff0c;遇到第一个数字比自己数字大的&#xff0c;那么&…

【class9】人工智能初步(处理单张图片)

Class9的任务&#xff1a;处理单张图像 为了更高效地学习&#xff0c;我们将“处理单张图像”拆分成以下几步完成&#xff1a; 1. 读取图像文件 2. 调用通用物体识别 3. 提取图像分类信息 4. 对应分类文件夹还未创建时&#xff0c;创建文件夹 5. 移动图像到对应文件夹 0.获取…

Ubuntu 安装 eclipse 的详细过程及工程创建和编译配置

目录 一、安装环境二、下载依赖 java jdk三、下载 eclipse四、安装4.1 java 环境4.2 eclipse 安装4.3 打开 eclipse 五、配置 eclipse5.1 新建 C 工程5.2 工具链 配置5.3 头文件路径5.4 链接库5.5 编译 一、安装环境 Ubuntu 版本&#xff1a;22.04.3 位数&#xff1a;64-bit 二…

记录一次 vue2 前端项目整合过程

整合成功效果图 具体说明&#xff1a; 项目A是现在的vue2前端项目&#xff0c;项目B是一个开源的工作流前端&#xff0c;项目后端代码已经整合了&#xff0c;就不多提了。这里主要记录下前端整合的过程和思路。 1、开源工作流里面的功能&#xff0c;拷贝到自己对应的vue2项目里…

大模型MoE技术深度解读,引领AI走向新高度

大模型系列之解读MoE Mixtral 8x7B的亮相&#xff0c;引领我们深入探索MoE大模型架构的奥秘。MoE究竟是什么&#xff1f;一起揭开它的神秘面纱。 1. MoE溯源 MoE&#xff0c;源自1991年的研究论文《Adaptive Mixture of Local Experts》&#xff0c;与集成学习方法相契合&…

机器学习笔记 KAN网络架构简述(Kolmogorov-Arnold Networks)

一、简述 在最近的研究中,出现了号称传统多层感知器 (MLP) 的突破性替代方案,重塑了人工神经网络 (ANN) 的格局。这种创新架构被称为柯尔莫哥洛夫-阿诺德网络 (KAN),它提出了一种受柯尔莫哥洛夫-阿诺德表示定理启发的函数逼近的方法。 与 MLP 不同,MLP 依赖于各个节…

NASA数据集——GES DISC 的 AIRS-CloudSat 云掩模、雷达反射率和云分类匹配 V3.2 (AIRS_CPR_MAT)

AIRS-AMSU variables-CloudSat cloud mask, radar reflectivities, and cloud classification matchups V3.2 (AIRSM_CPR_MAT) at GES DISC GES DISC 的 AIRS-CloudSat 云掩模、雷达反射率和云分类匹配 V3.2 (AIRS_CPR_MAT) 简介 这是 NetCDF-4 格式的 AIRS-CloudSat 定位子…

餐谱的展示程序

开发背景 可以根据分类直接找到需要展示的餐谱&#xff0c;大的分类A、B、C、D等 二级分类 A1、A2、A3、A4。。。 餐谱就是图片 加 说明 页面 选择一级分类A&#xff0c;选择二级分类A1&#xff0c;查询出该分类下的餐谱 代码 /*** 查询列表*/RequiresPermissions("…