网络基础(三)——网络层

目录

IP协议

1、基本概念

2、协议头格式

2.1、报头和载荷如何有效分离

2.2、如果超过了MAC的规定,IP应该如何做呢?

2.3、分片会有什么影响

3、网段划分

4、特殊的ip地址

5、ip地址的数量限制

6、私有ip地址和公网ip地址

7、路由


IP协议

网络层解决的问题是将数据从一台主机送到到另一台主机,即在复杂的网络环境中确定一个合适的路径。

ip = 目标网络 + 目标主机(在构建网络的时候,为我们将来高速定位一台主机,提供了基础保障)


1、基本概念

· 主机:配有IP地址, 但是不进行路由控制的设备;

· 路由器:即配有IP地址, 又能进行路由控制;

· 节点:主机和路由器的统称;


2、协议头格式

4位版本号(version):指定IP协议的版本,对于IPv4来说,就是4。
4位头部长度(header length):IP头部的长度是多少个32bit,也就是 length * 4 的字节数。 4bit表示最大的数字是15,因此IP头部最大长度是60字节。
8位服务类型(Type Of Service):3位优先权字段(已经弃用),4位TOS字段,和1位保留字段(必须置为0)。4位 TOS分别表示:最小延时,最大吞吐量,最高可靠性,最小成本。这四者相互冲突,只能选择一个。对于 ssh/telnet这样的应用程序,最小延时比较重要。对于ftp这样的程序,最大吞吐量比较重要。
16位总长度(total length):IP数据报整体占多少个字节。
16位标识(id):唯一的标识主机发送的报文。如果IP报文在数据链路层被分片了,那么每一个片里面的这个id都是相同的。
3位标志字段:第一位保留(保留的意思是现在不用,但是还没想好说不定以后要用到)。第二位置为1表示禁止分片,这时候如果报文长度超过MTU,IP模块就会丢弃报文。第三位表示"更多分片",如果分片了的话,最后一个分片置为1,其他是0。类似于一个结束标记。
13位分片偏移(framegament offset):是分片相对于原始IP报文开始处的偏移。其实就是在表示当前分片在原报文中处在哪个位置。实际偏移的字节数是这个值 * 8 得到的。因此,除了最后一个报文之外,其他报文的长度必须是8的整数倍(否则报文就不连续了)。
8位生存时间(Time To Live, TTL):数据报到达目的地的最大报文跳数。一般是64。每次经过一个路由,TTL -= 1,一直减到0还没到达,那么就丢弃了。这个字段主要是用来防止出现路由循环。
8位协议:表示上层协议的类型。
16位头部校验和:使用CRC进行校验, 来鉴别头部是否损坏。
32位源地址和32位目标地址:表示发送端和接收端。
选项字段(不定长, 最多40字节):略

2.1、报头和载荷如何有效分离

这里和tcp一样,4为首部长度表示报头的大小,范围为20-60字节,那么我们先提取前20个字节,提取4位的首部长度,判断有没有选项,所以IP协议是通过定长和自描述字段可以将报头和有效载荷分离。

2.2、如果超过了MAC的规定,IP应该如何做呢?

        前面说到了tcp要想做到100%可靠的传送给对面的前提是:你一定要有一个将数据传能发送到对方的能力。而IP要想跨网络传输也需要一个前提:把报文从一台主机送到和自己直接相连的下一台主机。这个能力是由mac帧,也就是数据链路层提供的。

        所以对于上面的主机B来讲,和这个路由器F是直接相连的,而任意两个直接相连的主机一定是在同一个局域网中。所以其实数据链路层解决的其实是局域网通信的问题。

        其中mac帧有一个规定:ip交下来的数据要受mac携带的有效载荷最大长度的影响,而且我们知道,有效载荷最大长度一定是ip交给mac的,既然是ip交给它的,那么其中就会涵盖ip报头+ip的有效载荷。而这个值就是mtu(max transfer unit最大传送单元),常规的就是1500字节。

所以ip在向下交付自己的报文,让mac帧去做下一个跳转的时候最大有效载荷长度不能超过1500字节,这就是规定。

如果超过了规定,要么IP就别发了,要么IP就要分片,而其中分片不算必须做的,因为你可以不传超过1500字节的数据。在网络通信的时候,不分片是常态,因为分片会引发很多潜在的问题。

首先我们要明确,既然分片了,那么到了对端就必须要组装。而且要组装正确,不能发过去一个数据,因为分片了,组装后又是另一种,所以从分片到组装当中传递时会携带相应的属性信息,换言之,属性信息在那个协议上,那么就由哪个协议完成分片和组装,所以刚刚说的都是由IP协议自己完成的。

2.3、分片会有什么影响

分片过多会导致丢包的概率增多,任何一个包丢了,都代表此处的传输有问题。

16位标识用来标识IP报文有没有进行分片。

13位分片偏移是分片相对于原始IP报文开始处的偏移。其实就是在表示当前分片在原报文中处在哪个位置。

3位的标志第一位没用,第二位置为1表示禁止分片,这时候如果报文长度超过MTU,IP模块就会丢弃报文。第三位表示"更多分片",如果分片了的话,最后一个分片置为1,其他是0。类似于一个结束标记。

所以提取出分片的报文,根据16位标识,聚合"所有的"分片报文。

根据片偏移进行升排序来判断丢没丢包,如果第一个丢了,则用第一个片偏移是不是从0开始的。

根据更多分片最后是否为0,保证多个分片报文全部收到了。

当然上面的保证都不是只单单通过一个对应一个的保证的,而且它们三个相互作用而保证的。

当然报文是有可能丢失的,而且我们可以根据这三个标志位来判断是哪几个丢失了。 

我们在上面说的时候其实是有一个漏洞的,这就是如果一个报文分片后,只有最后一片丢了,也就是"更多分片"最后不是0,但是紧接着下一个就是没有分片的报文,此时它的"更多分片"是0,这又怎么区分报文丢没丢呢?其实很简单,因为如果没有丢,那么它的片偏移肯定不是0,如果是0那么这个肯定就是没有分片的报文。

总结:根据3位标志的更多分片来看是否被分片,根据16位标识将所有分片的报文聚合在一起,根据13位片偏移进行排序,然后再根据更多分片来决定我们是否收到的最后一个报文,再根据13位片偏移来决定中间是否丢包,如果上面的操作没有任何问题,那么将上面的报文合并成一个报文完成拼接的功能。


3、网段划分

IP地址分为两个部分, 网络号和主机号

网络号: 保证相互连接的两个网段具有不同的标识;

主机号: 同一网段内, 主机之间具有相同的网络号, 但是必须有不同的主机号;

子网其实就是把网络号相同的主机放在一起,如果在子网中新增一台主机,那么这台主机的网络号要和子网的网络号相同,但是主机号不能和同一子网内的主机重复,如图:

通过合理设置主机号和网络号, 就可以保证在相互连接的网络中, 每台主机的IP地址都不相同。

那么问题来了, 手动管理子网内的IP, 是一个相当麻烦的事情。

有一种技术叫做DHCP, 能够自动的给子网内新增主机节点分配IP地址, 避免了手动管理IP的不便。一般的路由器都带有DHCP功能. 因此路由器也可以看做一个DHCP服务器。

过去曾经提出一种划分网络号和主机号的方案, 把所有IP地址分为五类, 如下图所示(该图出自[TCPIP])。

A类 0.0.0.0到127.255.255.255

B类 128.0.0.0到191.255.255.255

C类 192.0.0.0到223.255.255.255

D类 224.0.0.0到239.255.255.255

E类 240.0.0.0到247.255.255.255

随着Internet的飞速发展,这种划分方案的局限性很快显现出来,大多数组织都申请B类网络地址, 导致B类地址很快就 分配完了, 而A类却浪费了大量地址;

针对这种情况提出了新的划分方案, 称为CIDR(Classless Interdomain Routing):

· 引入一个额外的子网掩码(subnet mask)来区分网络号和主机号;

· 子网掩码也是一个32位的正整数. 通常用一串 "0" 来结尾;

· 将IP地址和子网掩码进行 "按位与" 操作, 得到的结果就是网络号;

· 网络号和主机号的划分与这个IP地址是A类、B类还是C类无关;

可见,IP地址与子网掩码做与运算可以得到网络号, 主机号从全0到全1就是子网的地址范围; IP地址和子网掩码还有一种更简洁的表示方法,例如140.252.20.68/24,表示IP地址为140.252.20.68, 子网掩码的高 24位是1,也就是255.255.255.0。


4、特殊的ip地址

· 将IP地址中的主机地址全部设为0, 就成为了网络号, 代表这个局域网;

· 将IP地址中的主机地址全部设为1, 就成为了广播地址, 用于给同一个链路中相互连接的所有主机发送数据包;

· 127.*的IP地址用于本机环回(loop back)测试,通常是127.0.0.1


5、ip地址的数量限制

我们知道, IP地址(IPv4)是一个4字节32位的正整数。那么一共只有 2的32次方个IP地址, 大概是43亿左右。而TCP/IP 协议规定, 每个主机都需要有一个IP地址。这意味着, 一共只有43亿台主机能接入网络么? 实际上, 由于一些特殊的IP地址的存在, 数量远不足43亿; 另外IP地址并非是按照主机台数来配置的, 而是每一个网卡都需要配置一个或多个IP地址。 CIDR在一定程度上缓解了IP地址不够用的问题(提高了利用率, 减少了浪费, 但是IP地址的绝对上限并没有增加), 仍然 不是很够用。 这时候有三种方式来解决:

动态分配IP地址: 只给接入网络的设备分配IP地址。 因此同一个MAC地址的设备, 每次接入互联网中, 得到 的IP地址不一定是相同的;

NAT技术(后面会重点介绍);

IPv6: IPv6并不是IPv4的简单升级版。 这是互不相干的两个协议, 彼此并不兼容; IPv6用16字节128位来表示一个IP地址; 但是目前IPv6还没有普及;


6、私有ip地址和公网ip地址

如果一个组织内部组建局域网,IP地址只用于局域网内的通信,而不直接连到Internet上,理论上使用任意的IP地址都可以,但是RFC 1918规定了用于组建局域网的私有IP地址

10.*,前8位是网络号,共16,777,216个地址

172.16.到172.31.,前12位是网络号,共1,048,576个地址

192.168.*,前16位是网络号,共65,536个地址 包含在这个范围中的, 都成为私有IP, 其余的则称为全局IP(或公网IP);

· 一个路由器可以配置两个IP地址, 一个是WAN口IP, 一个是LAN口IP(子网IP)。

· 路由器LAN口连接的主机, 都从属于当前这个路由器的子网中。

· 不同的路由器, 子网IP其实都是一样的(通常都是192.168.1.1)。子网内的主机IP地址不能重复。但是子网之间的IP地址就可以重复了。

· 每一个家用路由器, 其实又作为运营商路由器的子网中的一个节点。这样的运营商路由器可能会有很多级, 最外层的运营商路由器, WAN口IP就是一个公网IP了。

· 子网内的主机需要和外网进行通信时, 路由器将IP首部中的IP地址进行替换(替换成WAN口IP), 这样逐级 替换, 最终数据包中的IP地址成为一个公网IP。这种技术称为NAT(Network Address Translation,网络地址转换)。

· 如果希望我们自己实现的服务器程序, 能够在公网上被访问到, 就需要把程序部署在一台具有外网IP的服 务器上。这样的服务器可以在阿里云/腾讯云上进行购买。


7、路由

路由其实就是在复杂的网络结构中, 找出一条通往终点的路线;

路由的过程, 就是一跳一跳(Hop by Hop) "问路" 的过程。所谓 "一跳" 就是数据链路层中的一个区间。具体在以太网中指从源MAC地址到目的MAC地址之间的帧传输区间。

IP数据包的传输过程也和问路一样。

1、当IP数据包, 到达路由器时, 路由器会先查看目的IP;

2、路由器决定这个数据包是能直接发送给目标主机, 还是需要发送给下一个路由器;

3、依次反复, 一直到达目标IP地址;

那么如何判定当前这个数据包该发送到哪里呢? 这个就依靠每个节点内部维护一个路由表;

· 路由表可以使用route命令查看

· 如果目的IP命中了路由表, 就直接转发即可;

· 路由表中的最后一行,主要由下一跳地址和发送接口两部分组成,当目的地址与路由表中其它行都不匹配时,就按缺省路由条目规定的接口发送到下一跳地址。

假设某主机上的网络接口配置和路由表如下:

这台主机有两个网络接口,一个网络接口连到192.168.10.0/24网络,另一个网络接口连到 192.168.56.0/24网络;

路由表的Destination是目的网络地址,Genmask是子网掩码,Gateway是下一跳地址,Iface是发送接 口,Flags中的U标志表示此条目有效(可以禁用某些 条目),G标志表示此条目的下一跳地址是某个路由器的 地址,没有G标志的条目表示目的网络地址是与本机接口直接相连的网络,不必经路由器转发;

转发过程例1: 如果要发送的数据包的目的地址是192.168.56.3

1、跟第一行的子网掩码做与运算得 到192.168.56.0,与第一行的目的网络地址不符

2、再跟第二行的子网掩码做与运算得 到192.168.56.0,正是第二行的目的网络地址,因此从eth1接口发送出去;

3、由于192.168.56.0/24正是与eth1 接口直接相连的网络,因此可以直接发到目的主机,不需要经路由器转 发;

转发过程例2: 如果要发送的数据包的目的地址是202.10.1.2

1、依次和路由表前几项进行对比, 发现都不匹配;

2、按缺省路由条目, 从eth0接口发出去, 发往192.168.10.1路由器;

3、由192.168.10.1路由器根据它的路由表决定下一跳地址;

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/836048.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Docker尚硅谷_高级篇

Docker尚硅谷 高级篇一、Dockerfile1.1 Dockerfile1.2 构建过程1.3 Dockerfile保留字1.3 构建镜像1.4 虚悬镜像 二、Docker发布微服务2.1 搭建SpringBoot项目2.2 发布微服务项目到Docker容器 三、Docker网络3.1 Docker网络3.2 docker网络命令3.3 Docker网络模式3.4 docker03.5 …

sql注入之bool盲注

目录 盲注步骤 1、进入靶场 2、如下图所示输入?id1‘ 判断此时存在注入点 3、判断列数 ​编辑 4、开始盲注 普通的python脚本 代码思想 结果 二分查找python脚本 二分查找算法思想简介 二分查找与普通查找的主要差距 代码思想 代码 结果​编辑 下面以…

后端项目开发笔记

Maven打包与JDK版本不对应解决方法 我这里使用jdk8。 <build><plugins><plugin><groupId>org.apache.maven.plugins</groupId><artifactId>maven-compiler-plugin</artifactId><version>3.8.1</version><configurat…

趣味软件-吃什么(Eat What)?

&#x1f354;&#x1f35c;&#x1f355; 你是否也有这样的日常烦恼&#xff1f; 每天的“世纪难题”——今天吃什么&#xff1f; &#x1f570;️ 饭点到了&#xff0c;脑袋空空&#xff0c;选择困难症大爆发&#xff01; &#x1f46b; 和女朋友约会&#xff0c;却不知道她的…

HackMyVM-Minimal

目录 信息收集 arp nmap nikto whatweb WEB web信息收集 gobuster 文件包含漏洞 提权 web信息收集 main方法 question_1 question_2 question_3 prize.txt 软连接 信息收集 arp ┌──(root?0x00)-[~/HackMyVM] └─# arp-scan -l Interface: eth0, type: E…

.NET_NLog

步骤 1. 添加依赖 ①Microsoft.Extensions.DependencyInjection ②NLog.Extensions.Logging&#xff08;或Microsoft.Extensions.Logging.___&#xff09; Tutorial NLog/NLog Wiki GitHub 2.添加nlog.config文件(默认名称, 可改为其他名称, 但需要另行配置) 文件的基础…

基于Java+SpringBoot+Mybaties-plus+Vue+elememt 驾校管理 设计与实现

一.项目介绍 系统角色&#xff1a;管理员、驾校教练、学员 管理员&#xff1a; 个人中心&#xff1a;修改密码以及个人信息修改 学员管理&#xff1a;维护学员信息&#xff0c;维护学员成绩信息 驾校教练管理&#xff1a;驾校教练信息的维护 驾校车辆管理&…

【数据结构初阶】直接插入排序

最近浅学了直接插入排序&#xff0c;写个博客做笔记&#xff01;笔记功能除外若能对读者老爷有所帮助最好不过了&#xff01; 直接插入排序是插入排序的一种&#xff0c;那么介绍直接插入排序之前先介绍一下常见的排序算法&#xff01; 目录 1.常见的排序算法 2.直接插入排…

57. 【Android教程】相机:Camera

相机现在已经不仅仅是手机必备神器了&#xff0c;甚至相机的拍照质量已经是很多人买手机的首选条件了。而对于相机而言主要有两大功能&#xff1a;拍照片和拍视频。Android 为此两种方式&#xff1a; 相机 intent相机 API 本节我们就一起来看看相机的具体用法。 1. 打开 Camer…

C# Linq中的自定义排序

1.开发过程中&#xff0c;会遇到OrderBy/OrderByDescending排序无法满足的情况&#xff0c;此时就需要自定义排序&#xff0c;按照想要的排序规则取排序&#xff0c;比如订单的状态等等。 2.自定义泛型比较器代码如下&#xff1a; /// <summary>/// 自定义泛型比较器(用…

train_gpt2_fp32.cu - layernorm_forward_kernel3

源码 __global__ void layernorm_forward_kernel3(float* __restrict__ out, float* __restrict__ mean, float* __restrict__ rstd,const float* __restrict__ inp, const float* __restrict__ weight,const float* __restrict__ bias, int N, int C) {cg::thread_block bl…

【北京迅为】《iTOP-3588从零搭建ubuntu环境手册》-第8章 安装编译所需要的依赖包

RK3588是一款低功耗、高性能的处理器&#xff0c;适用于基于arm的PC和Edge计算设备、个人移动互联网设备等数字多媒体应用&#xff0c;RK3588支持8K视频编解码&#xff0c;内置GPU可以完全兼容OpenGLES 1.1、2.0和3.2。RK3588引入了新一代完全基于硬件的最大4800万像素ISP&…

多个文件 import 的相同模块里的对象

多个文件 import 的相同模块里的对象&#xff0c;是否永远都是同一个对象&#xff1f; 在store的index.js中 import vue from ‘vue’ import Vuex from ‘vuex’ 并配置有关对象 然后再app.vue中配置vm 在不同的文件中 import一个vue对象&#xff0c;在任何情况下&#…

vue2项目升级到vue3经历分享5

写到第5篇了&#xff0c;解决了很多问题&#xff0c;还有一些需要调整 1 el-input-number指令兼容性调整 下面这个可编辑的表格&#xff0c;全是0&#xff0c;于是需要一个指令&#xff0c;让它自己实现如果是0&#xff0c;就置空&#xff1b;如果是数字就是格式化为千分位&…

使用docker安装seafile

使用docker安装seafile 1 介绍seafile Seafile 是一款开源的企业云盘&#xff0c;支持全平台&#xff08;浏览器、Windows、Mac、Linux、Android、IPhone等&#xff09;客户端。Seafile 内置协同文档 SeaDoc &#xff0c;让协作撰写、管理和发布文档更便捷。最重要的这是国产…

【网站项目】SpringBoot796水产养殖系统

&#x1f64a;作者简介&#xff1a;拥有多年开发工作经验&#xff0c;分享技术代码帮助学生学习&#xff0c;独立完成自己的项目或者毕业设计。 代码可以私聊博主获取。&#x1f339;赠送计算机毕业设计600个选题excel文件&#xff0c;帮助大学选题。赠送开题报告模板&#xff…

【JavaEE初阶系列】——Cookie和Session应用之实现登录页面

目录 &#x1f6a9;本章目标 1.登录页面 2.servlet处理上述的登录请求 3.网站主页(成功登录之后的页面&#xff09; &#x1f6a9;实现过程 &#x1f393;登录页面 &#x1f393;Servlet处理登录请求 &#x1f388;获取请求传来的参数(用户名和密码) &#x1f388;验证…

一件事做了十年

目录 一、背景二、过程1.贫困山区的心理悲哀2.基础差的客观转变3.对于教育的思考4.持续做这件事在路上5.同行人有很早就完成的&#xff0c;有逐渐放弃的&#xff0c;你应该怎么办&#xff1f;6.回头看&#xff0c;什么才是最终留下的东西? 三、总结 一、背景 在哪里出生我们无…

《Linux运维总结:ARM64架构CPU基于docker-compose一离线部署rabbitmq 3.10.25容器版镜像模式集群》

总结&#xff1a;整理不易&#xff0c;如果对你有帮助&#xff0c;可否点赞关注一下&#xff1f; 更多详细内容请参考&#xff1a;《Linux运维篇&#xff1a;Linux系统运维指南》 一、部署背景 由于业务系统的特殊性&#xff0c;我们需要面向不通的客户安装我们的业务系统&…

【ubuntu】ubuntu-18.04开机卡在Starting User Manager for UID 120....问题解决方案

错误截图 解决方案 启动系统&#xff0c;开机界面单击按键esc键&#xff0c;注意需要将鼠标定位到菜单界面&#xff0c;移动键盘上下键选择Advanced options for Ubuntu 进入如下菜单&#xff0c;选择recovery mode 回车之后会弹出如下界面&#xff0c;选择如下root&#xff0…