导航
- Rust多线程交叉打印+Send Sync特征讲解
- 一、Rust多线程交叉打印
- 二、Send Sync 特征讲解
Rust多线程交叉打印+Send Sync特征讲解
一、Rust多线程交叉打印
- 先说背景
- 有两个线程,分别为0号线程和1号线线程
- 两个线程交叉打印共享值,并将共享值+1
- 当标志为
false
时,0号线程打印,标志为true
时,1号线程打印 - 要求0号线程先打印
我们看代码
use std::sync::{Arc, Condvar, Mutex};
use std::thread;
static mut count: usize = 0;//全局变量
fn main() {//互斥锁,每次只让一个线程负责打印let mutex = Arc::new(Mutex::new(false));//初始值为false//信号量,实现线程同步,即控制线程运行顺序let condvar = Arc::new(Condvar::new());//让主线程等子线程执行完再推出let mut handles = vec![];for i in 0..=1 {//两个线程都应该持有同一个锁的所有权let cmutex = Arc::clone(&mutex);//两个线程都应该持有的事同一个信号量的所有权let ccondavar = Arc::clone(&condvar);let handle = thread::spawn(move || {//上锁,这个锁可能是0号线程先获得,也有可能是1号线程,这段代码要求0号线程先打印,所以我们下面通过信号量来实现let mut lock = cmutex.lock().unwrap();//print!("{}", *lock);for j in 0..=2 {if i % 2 == 0 {if *lock {//当mutex持有的值为false时才轮到0号线程打印,否则等待lock = ccondavar.wait(lock).unwrap();}*lock = true;//lock为false,0号线程可以打印一次,然后设置为true是为了防止0号线程一直打印unsafe {//count += 1;println!("{} thread ouput : {}", i, count);}ccondavar.notify_one();//通知1号线程可以行动了} else {if !*lock {//当mutex持有的值为true时才轮到1号线程打印,否则释放lock,然后等待lock = ccondavar.wait(lock).unwrap();}*lock = false;//lock为true时,0号线程可以打印一次,然后这里设置为false是为了防止0号线程一直打印unsafe {count += 1;println!("{} thread ouput : {}", i, count);}ccondavar.notify_one();//通知0号线程可以行动了}}});handles.push(handle);}for handle in handles {handle.join().unwrap();}}
运行一下
0 thread ouput : 1
1 thread ouput : 2
0 thread ouput : 3
1 thread ouput : 4
0 thread ouput : 5
1 thread ouput : 6
- 可以看到我们已经实现了交叉打印,其实我们可以假想一下,如果一开始1号线程先抢到了
Mutex
,1号线程会先打印吗? - 答案是不会的,因为我们通过设置
mutex
的值为false
,并在1号线程逻辑中的代码控制了,代码如下
if !*lock {//当mutex持有的值为true时才轮到1号线程打印,否则释放lock,然后等待lock = ccondavar.wait(lock).unwrap();}
- 可以看到如果
lock
的初始值为false
,信号量通过wait
函数释放了这个锁,所以哪怕1号线程在最开始抢到了锁,也会在这里释放掉,让0号线程先打印
二、Send Sync 特征讲解
在Rust中,有一个很重要的机制就是所有权机制,值的赋值行为,很有可能导致一个值移动来移动去,使得在Rust的多线程编程中变得很难管理。
于此同时,多线程编程中,多个线程使用(拥有一个所有权)同一个变量的场景也是非常常见的,因为Rust提出了一个Rc
和Arc
。
Rc
和Arc
一个共同特征:
- 能够让一个值能有多个拥有者,即一个值,产生了多个所有权
但是Rc
和Arc
一个重要的区别:
- Arc能够在多线程中,安全的移动所有权,换句话说,让一个值的所有权可以移动到另一个线程中,这是因为
Arc
本身实现了Send
特征,我们来看一下Send
特征的定义
实现Send
的类型可以在线程间安全的传递其所有权
unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {}
unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {}
第一部分代码中,可以看到我们需要实现线程的交叉打印,那必然线程之间是要共享一个锁,那么为了锁能够共享,那么我们需要对锁产生多个所有权,并且能够在线程之间移动所有权,所以第一份的代码中是这样:
let mutex = Arc::new(Mutex::new(false));//初始值为false
复制所有权和移动锁所有权的代码
let cmutex = Arc::clone(&mutex);//复制所有权
let ccondavar = Arc::clone(&condvar);let handle = thread::spawn(move || {//move移动所有权let mut lock = cmutex.lock().unwrap();
因此,多个线程,通过Arc
,持有了同一个Mutex
的所有权,并且是每个线程都有一个所有权,可以共享使用Mutex
那么能够安全的传递Mutex的所有权,能不能安全使用一个锁,是另一个特征Sync
实现的,我们虽然安全的在多线程间移动所有权,但是能不能安全使用,还是需要实现Sync
特征,所以Mutex本身
实现了Sync
特征。也看一下Sync
特征的定义。
- 实现Sync的类型可以在线程间安全的共享(通过引用)
unsafe impl<T: ?Sized + Send> Sync for Mutex<T> {}
然后又可以看到,Mutex
中,仅仅限制了其指向的值T只需要实现Send
特征,这是因为锁的值,我们其实是想让线程每次单独的访问,所以在一个时刻,只有一个线程访问即可,所有T
只需要Send,让一个时刻只有一个线程通过锁拿到值的一个所有权。
欢迎大家关注我的博客