【人工智能Ⅱ】实验5:自然语言处理实践(情感分类)

实验5:自然语言处理实践(情感分类)

一:实验目的与要求

1:掌握RNN、LSTM、GRU的原理。

2:学习用RNN、LSTM、GRU网络建立训练模型,并对模型进行评估。

3:学习用RNN、LSTM、GRU网络做预测。

二:实验内容

选择公开数据集,用LSTM、GRU或相应的改进模型实现情感分类。

如:IMDB电影评论数据集,IMDB是一个对电影评论标注为正向评论与负向评论的数据集,共有25000条文本数据作为训练集,25000条文本数据作为测试集。百度平台该数据集已经经过预处理:评论(单词序列)已经被转换为整数序列,其中每个整数代表字典中的某个单词。

三:实验环境

本实验所使用的环境条件如下表所示。

操作系统

Ubuntu(Linux)

程序语言

Python(3.8.10)

第三方依赖

numpy, matplotlib,keras等

四:方法流程

1:使用imdb.load_data编写数据加载代码,设置相关参数,例如max_features、maxlen、batch_size等。

2:编写LSTM和GRU模型的网络代码,并打印网络结构进行分析。

3:编写上述RNN模型编译、训练和测试的代码。

4:根据训练结果进行可视化绘图,例如损失值和准确率。

5:根据实验结果,对比上述RNN模型。

五:实验展示(训练过程的数据打印和可视化、测试和应用的结果展示)

1:GRU模型的实现

GRU模型的代码搭建如下表所示。

model = models.Sequential()

model.add(layers.Embedding(max_features, 32, input_length = maxlen))

model.add(layers.Conv1D(32, 5, activation = 'relu'))

model.add(layers.MaxPooling1D(3))

model.add(layers.Conv1D(32, 5, activation = 'relu'))

model.add(layers.MaxPooling1D(3))

model.add(layers.Dropout(0.2))

model.add(layers.CuDNNGRU(32))  # return_sequences = False

model.add(layers.Dense(1, activation = 'sigmoid'))


通过【model.summary()】打印GRU模型的网络结构,如下图所示。由下图可知,GRU模型的训练参数量为336673。

在模型编译环节,由于情感分析只需要分类为正向情绪positive(符号化为1)和负向情绪negative(符号化为0),因此GRU模型采用二分类交叉熵(binary_crossentropy)作为损失函数。同时,优化器选用rmsprop,评价指标选用准确率。

在模型训练环节,批次大小选为32,迭代次数选为15,验证集在输入训练集中的占比为20%。GRU模型的训练过程如下表所示。

Epoch 1/15

625/625 [==============================] - 31s 10ms/step - loss: 0.5597 - acc: 0.6617 - val_loss: 0.2946 - val_acc: 0.8784

Epoch 2/15

625/625 [==============================] - 6s 10ms/step - loss: 0.2560 - acc: 0.8980 - val_loss: 0.2974 - val_acc: 0.8778

Epoch 3/15

625/625 [==============================] - 6s 9ms/step - loss: 0.1908 - acc: 0.9268 - val_loss: 0.2786 - val_acc: 0.8842

Epoch 4/15

625/625 [==============================] - 6s 9ms/step - loss: 0.1511 - acc: 0.9433 - val_loss: 0.3029 - val_acc: 0.8822

Epoch 5/15

625/625 [==============================] - 6s 10ms/step - loss: 0.1237 - acc: 0.9564 - val_loss: 0.2970 - val_acc: 0.8898

Epoch 6/15

625/625 [==============================] - 6s 10ms/step - loss: 0.0941 - acc: 0.9675 - val_loss: 0.3680 - val_acc: 0.8750

Epoch 7/15

625/625 [==============================] - 8s 12ms/step - loss: 0.0716 - acc: 0.9766 - val_loss: 0.3606 - val_acc: 0.8806

Epoch 8/15

625/625 [==============================] - 6s 10ms/step - loss: 0.0428 - acc: 0.9870 - val_loss: 0.4644 - val_acc: 0.8740

Epoch 9/15

625/625 [==============================] - 6s 9ms/step - loss: 0.0266 - acc: 0.9916 - val_loss: 0.4629 - val_acc: 0.8736

Epoch 10/15

625/625 [==============================] - 7s 10ms/step - loss: 0.0154 - acc: 0.9954 - val_loss: 0.5867 - val_acc: 0.8754

Epoch 11/15

625/625 [==============================] - 7s 12ms/step - loss: 0.0087 - acc: 0.9976 - val_loss: 0.6492 - val_acc: 0.8770

Epoch 12/15

625/625 [==============================] - 8s 12ms/step - loss: 0.0076 - acc: 0.9984 - val_loss: 0.8017 - val_acc: 0.8686

Epoch 13/15

625/625 [==============================] - 8s 12ms/step - loss: 0.0057 - acc: 0.9988 - val_loss: 0.9574 - val_acc: 0.8700

Epoch 14/15

625/625 [==============================] - 8s 12ms/step - loss: 0.0043 - acc: 0.9989 - val_loss: 0.9877 - val_acc: 0.8722

Epoch 15/15

625/625 [==============================] - 7s 11ms/step - loss: 0.0019 - acc: 0.9996 - val_loss: 1.0454 - val_acc: 0.8652

针对上述训练结果,利用plt绘制曲线变化图。

GRU模型的训练损失值和验证损失值,如下图所示。

GRU模型的训练准确率和验证准确率,如下图所示。

 基于利用数据集训练过后的模型,在测试集上进行测试,结果如下图所示。最终的测试准确率为:84.70%。

2:LSTM模型的实现

LSTM模型的代码搭建如下表所示。

model = models.Sequential()

model.add(layers.Embedding(max_features, 32, input_length = maxlen))

model.add(layers.Dropout(0.2))

model.add(layers.CuDNNLSTM(32))  # return_sequences = False

model.add(layers.Dense(1, activation = 'sigmoid'))


通过【model.summary()】打印GRU模型的网络结构,如下图所示。由下图可知,LSTM模型的训练参数量为328481。

在模型编译环节,由于情感分析只需要分类为正向情绪positive(符号化为1)和负向情绪negative(符号化为0),因此GRU模型采用二分类交叉熵(binary_crossentropy)作为损失函数。同时,优化器选用rmsprop,评价指标选用准确率。

在模型训练环节,批次大小选为32,迭代次数选为15,验证集在输入训练集中的占比为20%。GRU模型的训练过程如下表所示。

Epoch 1/15

625/625 [==============================] - 18s 27ms/step - loss: 0.5685 - acc: 0.6912 - val_loss: 0.3342 - val_acc: 0.8610

Epoch 2/15

625/625 [==============================] - 17s 27ms/step - loss: 0.2768 - acc: 0.8936 - val_loss: 0.2835 - val_acc: 0.8870

Epoch 3/15

625/625 [==============================] - 16s 26ms/step - loss: 0.2250 - acc: 0.9143 - val_loss: 0.3460 - val_acc: 0.8634

Epoch 4/15

625/625 [==============================] - 15s 24ms/step - loss: 0.2012 - acc: 0.9244 - val_loss: 0.3467 - val_acc: 0.8796

Epoch 5/15

625/625 [==============================] - 16s 26ms/step - loss: 0.1847 - acc: 0.9314 - val_loss: 0.2746 - val_acc: 0.8916

Epoch 6/15

625/625 [==============================] - 16s 25ms/step - loss: 0.1696 - acc: 0.9402 - val_loss: 0.3191 - val_acc: 0.8808

Epoch 7/15

625/625 [==============================] - 15s 25ms/step - loss: 0.1641 - acc: 0.9403 - val_loss: 0.2730 - val_acc: 0.8960

Epoch 8/15

625/625 [==============================] - 15s 25ms/step - loss: 0.1609 - acc: 0.9429 - val_loss: 0.2994 - val_acc: 0.8942

Epoch 9/15

625/625 [==============================] - 16s 25ms/step - loss: 0.1518 - acc: 0.9450 - val_loss: 0.2790 - val_acc: 0.8924

Epoch 10/15

625/625 [==============================] - 16s 26ms/step - loss: 0.1315 - acc: 0.9551 - val_loss: 0.3164 - val_acc: 0.8740

Epoch 11/15

625/625 [==============================] - 15s 25ms/step - loss: 0.1341 - acc: 0.9521 - val_loss: 0.2852 - val_acc: 0.8972

Epoch 12/15

625/625 [==============================] - 16s 25ms/step - loss: 0.1223 - acc: 0.9568 - val_loss: 0.3203 - val_acc: 0.8924

Epoch 13/15

625/625 [==============================] - 16s 26ms/step - loss: 0.1170 - acc: 0.9599 - val_loss: 0.2889 - val_acc: 0.8920

Epoch 14/15

625/625 [==============================] - 16s 26ms/step - loss: 0.1029 - acc: 0.9637 - val_loss: 0.3150 - val_acc: 0.8872

Epoch 15/15

625/625 [==============================] - 16s 25ms/step - loss: 0.1008 - acc: 0.9662 - val_loss: 0.3256 - val_acc: 0.8942

针对上述训练结果,利用plt绘制曲线变化图。

GRU模型的训练损失值和验证损失值,如下图所示。

GRU模型的训练准确率和验证准确率,如下图所示。

基于利用数据集训练过后的模型,在测试集上进行测试,结果如下图所示。最终的测试准确率为:87.72%。

3:GRU模型和LSTM模型的对比

基于本实验第1节和第2节部分的内容,可以得到:

(1)GRU模型的训练参数量为336673,而LSTM模型的训练参数量为328481。因此,GRU模型的训练参数量略多于LSTM模型。

(2)GRU模型在训练过程中的验证集上的最高准确率为88.98%,而LSTM模型在训练过程中的验证集上的最高准确率为89.72%。因此,GRU模型的验证准确率略低于LSTM模型。

(3)GRU模型最终的测试准确率为84.70%,而L,STM模型最终的测试准确率为87.72%。因此,GRU模型的测试准确率略低于LSTM模型。

    综上所述,GRU模型的效果比LSTM模型略差。

六:实验结论

1:斯坦福官方平台的IMDB电影评论数据集Large Movie Review Dataset v1.0(Sentiment Analysis)。

2:添加正则化项(如:dropout)可以有效防止模型过拟合,提高泛化能力。同时,选择合适的优化器(如:adam、rmsprop)可以加速模型的训练过程。

3:隐藏层单元数、学习率、批次大小等超参数的调整对于LSTM和GRU模型的表现性能具有显著影响。通过合理的超参数调整,可以进一步提高模型的性能。

4:GRU模型可以解决RNN中不能长期记忆和反向传播中的梯度等问题,但是比LSTM简单,容易进行训练。

5:在LSTM模型中,信息的添加和移除通过“门”结构来实现,“门”结构在训练过程中会去学习该保存或遗忘哪些信息。其中,LSTM模型具有三个门,遗忘门,输入门,输出门。

6:循环神经网络是时间上的展开,处理的是序列结构的信息。而递归神经网络是是空间上的展开,处理的是树状结构的信息。

7:电影评论情感分析的实践流程示意图,如下图所示。

七:遇到的问题和解决方法

    暂无。

八:程序源代码

    以下代码为GRN示例,LSTM可同理实现。完整代码可见ipynb附件。

import numpy as np

import matplotlib.pyplot as plt

from keras.datasets import imdb

from keras import models

from keras import layers

from keras.preprocessing.sequence import pad_sequences

max_features = 10000  # Only include top 10,000 words in the vocabulary

maxlen = 500  # Cut off each review after 500 words

batch_size = 32

(X_train, y_train), (X_test, y_test) = imdb.load_data(num_words = max_features)

X_train.shape, X_test.shape

X_train = pad_sequences(X_train, maxlen = maxlen)

X_test = pad_sequences(X_test, maxlen = maxlen)

X_train.shape, X_test.shape

model = models.Sequential()

model.add(layers.Embedding(max_features, 32, input_length = maxlen))

model.add(layers.Conv1D(32, 5, activation = 'relu'))

model.add(layers.MaxPooling1D(3))

model.add(layers.Conv1D(32, 5, activation = 'relu'))

model.add(layers.MaxPooling1D(3))

model.add(layers.Dropout(0.2))

model.add(layers.CuDNNGRU(32))  # return_sequences = False

model.add(layers.Dense(1, activation = 'sigmoid'))

model.summary()

model.compile(loss = 'binary_crossentropy', optimizer = 'rmsprop', metrics = ['acc'])

history = model.fit(X_train, y_train, batch_size = batch_size, epochs = 15, validation_split = 0.2)

loss = history.history['loss']

val_loss = history.history['val_loss']

acc = history.history['acc']

val_acc = history.history['val_acc']

epochs = range(1, 16)

plt.plot(epochs, loss, 'go', label = 'Training Loss')

plt.plot(epochs, val_loss, 'g', label = 'Validation Loss')

plt.xlabel('Epochs')

plt.ylabel('Loss')

plt.legend()

plt.show()

plt.plot(epochs, acc, 'bo', label = 'Training Accuarcy')

plt.plot(epochs, val_acc, 'b', label = 'Validation Accuracy')

plt.xlabel('Epochs')

plt.ylabel('Accuracy')

plt.legend()

plt.show()

model.evaluate(X_test, y_test)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/831902.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AST原理(反混淆)

一、AST原理 jscode var a "\u0068\u0065\u006c\u006c\u006f\u002c\u0041\u0053\u0054";在上述代码中,a 是一个变量,它被赋值为一个由 Unicode 转义序列组成的字符串。Unicode 转义序列在 JavaScript 中以 \u 开头,后跟四个十六进…

Python学习笔记------json

json简介 JSON是一种轻量级的数据交互格式。可以按照JSON指定的格式去组织和封装数据 JSON本质上是一个带有特定格式的字符串 主要功能:json就是一种在各个编程语言中流通的数据格式,负责不同编程语言中的数据传递和交互 为了让不同的语言能够相互通…

《LTC与铁三角∶从线索到回款-人民邮电》关于铁三角不错的论述

《LTC与铁三角∶从线索到回款-人民邮电》一书中,关于铁三角不错的论述,收藏之:客户责任人的角色定义及核心价值 AR 的核心价值定位主要体现在三个方面:客户关系、 客户满意度、竞争对手 “ 压制 ” 。 维护客户关系&#x…

百川2模型解读

简介 Baichuan 2是多语言大模型,目前开源了70亿和130亿参数规模的模型。在公开基准如MMLU、CMMLU、GSM8K和HumanEval上的评测,Baichuan 2达到或超过了其他同类开源模型,并在医学和法律等垂直领域表现优异。此外,官方还发布所有预…

[数据结构]————排序总结——插入排序(直接排序和希尔排序)—选择排序(选择排序和堆排序)-交换排序(冒泡排序和快速排序)—归并排序(归并排序)

文章涉及具体代码gitee: 登录 - Gitee.com 目录 1.插入排序 1.直接插入排序 总结 2.希尔排序 总结 2.选择排序 1.选择排序 ​编辑 总结 2.堆排序 总结 3.交换排序 1.冒泡排序 总结 2.快速排序 总结 4.归并排序 总结 5.总的分析总结 1.插入排…

Unity---版本控制软件

13.3 版本控制——Git-1_哔哩哔哩_bilibili Git用的比较多 Git 常用Linux命令 pwd:显示当前所在路径 ls:显示当前路径下的所有文件 tab键自动补全 cd:切换路径 mkdir:在当前路径下创建一个文件夹 clear:清屏 vim…

Linux的socket详解

一、本机直接的进程通信方式 管道(Pipes): 匿名管道(Anonymous pipes):通常用于父子进程间的通信,它是单向的。命名管道(Named pipes,也称FIFO):允…

微星主板安装双系统不能进入Ubuntu的解决办法

在微星主板的台式机上面依次安装了Windows11和Ubuntu22.04。在Ubuntu安装完成后重启,没有出现系统选择界面,直接进入了Windows11。怎么解决?方法如下: (1)正常安装Windows11 (2)安…

《自动机理论、语言和计算导论》阅读笔记:p352-P401

《自动机理论、语言和计算导论》学习第 12 天,p352-P401总结,总计 50 页。 一、技术总结 1.Turing Machine ™ 2.undecidability ​ a.Ld(the diagonalization language) 3.reduction p392, In general, if we have an algorithm to convert insta…

Git系列:config 配置

💝💝💝欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:「stormsha的主页」…

Java中的枚举类型介绍

一、背景及定义 情景: 枚举是在JDK1.5以后引入的。 主要用途是: 将一组常量组织起来,在这之前表示一组常量通常使用定义常量的方式: 这种定义方式实际上并不好。 例如:如果碰巧有另一个变量也是1,那么…

笔记85:如何计算递归算法的“时间复杂度”和空间复杂度?

先上公式: 递归算法的时间复杂度 递归次数 x 每次递归消耗的时间颗粒数递归算法的空间复杂度 递归深度 x 每次递归消耗的内存空间大小 注意: 时间复杂度指的是在执行这一段程序的时候,所花费的全部的时间,即时间的总和而空间复…

以太网基础-IP、ICMP、ARP协议

一、IP协议 参考:rfc791.txt.pdf (rfc-editor.org) IP协议(Internet Protocol)是TCP/IP协议族中最核心的协议,提供不可靠的、无连接的、尽力而为的数据报传输服务。 IP报文数据头如下 Version:4bit,4表示…

网络模型与调试

网络模型 网络的体系结构 ● 网络采用分而治之的方法设计,将网络的功能划分为不同的模块,以分层的形式有机组合在一起。 ● 每层实现不同的功能,其内部实现方法对外部其他层次来说是透明的。每层向上层提供服务,同时使用下层提供…

Elasticsearch:如何使用 Java 对索引进行 ES|QL 的查询

在我之前的文章 “Elasticsearch:对 Java 对象的 ES|QL 查询”,我详细介绍了如何使用 Java 来对 ES|QL 进行查询。对于不是很熟悉 Elasticsearch 的开发者来说,那篇文章里的例子还是不能单独来进行运行。在今天的这篇文章中,我来详…

MySQL CRUD进阶

前言👀~ 上一章我们介绍了CRUD的一些基础操作,关于如何在表里进行增加记录、查询记录、修改记录以及删除记录的一些基础操作,今天我们学习CRUD(增删改查)进阶操作 如果各位对文章的内容感兴趣的话,请点点小…

【网络编程下】五种网络IO模型

目录 前言 一.I/O基本概念 1.同步和异步 2.阻塞和非阻塞 二.五种网络I/O模型 1.阻塞I/O模型 2.非阻塞式I/O模型 ​编辑 3.多路复用 4.信号驱动式I/O模型 5. 异步I/O模型 三.五种I/O模型比较​编辑 六.I/O代码示例 1. 阻塞IO 2.非阻塞I/O 3.多路复用 (1)select …

Electron 对 SQLite 进行加密

上一篇讲了如何在 Electron使用 SQLite,如果 SQLite 中存有敏感数据,客户端采用明文存储风险很高,为了保护客户数据,就需要对数据进行加密,由于 electron 对代码并不加密,所以这里排除通过逆向工程进行数据…

想要快速接收的看过来:Cell旗下毕业神刊,中科院二区、平均审稿周期1个月,冲!

我是娜姐 迪娜学姐 ,一个SCI医学期刊编辑,探索用AI工具提效论文写作和发表。 就是它了,Cell旗下全OA期刊iScience。影响因子5.8分,中科院二区,年发文量逐年上涨,2023年发文近3000篇,2024年第一季…

一周学会Django5 Python Web开发 - Django5 ModelForm表单定义与使用

锋哥原创的Python Web开发 Django5视频教程: 2024版 Django5 Python web开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili2024版 Django5 Python web开发 视频教程(无废话版) 玩命更新中~共计51条视频,包括:2024版 Django5 Python we…