Python语言在地球科学中地理、气象、气候变化、水文、生态、传感器等数据可视化到常见数据分析方法的使用

Python是功能强大、免费、开源,实现面向对象的编程语言,Python能够运行在Linux、Windows、Macintosh、AIX操作系统上及不同平台(x86和arm),Python简洁的语法和对动态输入的支持,再加上解释性语言的本质,使得它在大多数平台上的许多领域都是一个理想的脚本语言,特别适用于快速的应用程序开发。Python具有丰富和强大的库,能够把用其他语言制作的各种模块(尤其是C/C++)很轻松地联结在一起。除了Python标准库,几乎所有行业领域都有相应的Python软件库,随着NumPy、SciPy、Matplotlib和Pandas等众多Python应用程序库的开发,Python在科学和工程领域地位日益重要,在数据处理、科学计算、数学建模、数据挖掘和数据可视化方面的优异性能使得Python在地球科学中地理、气象、气候变化、水文、生态、传感器等领域的学术研究和工程项目中得到广泛应用并高效解决各种数据分析问题,可以预见未来Python将成为科学和工程领域的主流程序设计语言。

1、提供虚拟机(Virtual Box)文件(预装好Anaconda环境,可直接使用)
2、提供原始数据和中间临时文件

专题一 Python重点工具讲解【打好基础】

Numpy:科学计算
Scipy:科学计算
Sklearn:机器学习
Matplotlib:可视化
Cartopy:地理数据可视化

GeoPandas:地理数据分析

专题二 常见地球科学数据讲解【掌握数据的特点】

1、站点数据
GSOD
GHCN
ISMN:国际土壤湿度测量网络数据

FLUXNET:全球通量观测网络数据

2、格点观测数据
CRU

CN05.1
OISST、HadSST

3、再分析
ERA5
GLDAS

4、遥感数据
GLEAM

Landsat

MODIS

TRMM

SMAP:土壤湿度主动被动遥感数据

专题三 使用Xarray处理netCDF和Geotiff数据

Xarray 读取&写入 netCDF文件
Groupby & resample 对时间、空间信息进行操作
Rasterio & rioxarray

专题四 使用Pysat进行大空间分析

1. 空间自相关分析
分析干旱事件发生的空间聚集性

2. 空间回归模型
建模气温与地形因素的空间关系
GWR模型评估地形对降水分布的局部影响 

3. 空间点模式分析
探测极端天气事件的热点区域

4. 时空数据分析
评估城市热岛效应的时空演化

专题五 使用Dask进行大数据并行计算

使用Dask进行大数据并行计算
Arrays、DataFrames
无结构数据的并行处理
延迟计算
案例一:并行处理长时间序列的TRMM降水数据,识别极端降水事件的时空分布特征
案例二:利用Dask并行计算,快速监测全球范围内干旱的发生、发展和持续时间

专题六 使用Pandas分析时间序列数据-1

案例一:时间序列填补

案例二:极端风速重现期分析

案例三:台风个数统计

专题七 使用Pandas分析时间序列数据-2

1、环流指数与温度、降水变化的关联性
各环流指数对全球及区域温度变化的影响
环流指数与极端高温/低温事件的联系
环流指数与干旱/洪水事件的关联
环流指数对季风系统的影响

2、空间插值
使用Kriging进行站点数据插值 
使用IDW插值生成高分辨率气温场

3、缺测数据插补
针对地面站点数据中的缺失值进行插补
利用机器学习算法插补遥感数据中的缺测像元
结合空间插值和时间插值等多种方法提高数据质量

专题八 使用Python处理遥感数据1以Landsat数据为例

1、大数据的可视化
GB级数据可视化

2、植被指数计算

3、裁剪区域
使用mask掩膜文件裁剪
使用shapefile文件裁剪

专题九 使用Python处理遥感数据2—以MODIS数据为例

1、预备工作:
Python读取HDF4-EOS数据
使用GDAL库预处理
转投影为wgs84+lonlat
拼接多景影像

2、案例一:土地利用分析(MOD12C1)
2000-2020年青藏高原土地利用分析
分析不同土地利用分类上气温和降水的变化

3、案例二:生态系统生产力分析(MOD17A2)
青藏高原草场上土地利用GPP变化
分析草场GPP与降水之间关系(ERA5再分析数据)

4、案例三:分析积雪覆盖时间(MOD10A2)
2000-2020年间青藏高原积雪时间统计
分析祁连山不同高程带积雪时间统计(DEM:GTOP30S)

5、案例四:积雪与生产力之间的关系(MOD10A2和MOD17A2)
分析新疆北疆积雪覆盖时间与春季GPP的变化

专题十 使用Python处理站点数据以GSOD和气象共享网数据为例

1、数据的读取
读取美国NOAA的GSOD日值数据
读取气象共享网日值数据

2、数据清洗:
数据整理
异常值检测
阈值法
模型法
孤立森林

3、多时间尺度的统计:
年尺度统计
季尺度统计

4、站点插值:(随机森林树)
利用高程、经纬度插值气温数据

专题十一 使用Python处理遥感水文数据以TRMM遥感降水数据和GLEAM数据等为例

案例一:空间降尺度
使用NDVI、DEM和机器学习算法对TRMM降水数据降尺度

案例二:分析蒸散数据的年际变化
读取GLEAM数据,并分析蒸散发的年际变化
比较MODIS ET产品与GLEAM的差异

案例三:使用随机森林算法估算地表蒸散发
GLEAM和ERA5数据建立机器学习估算模型
在区域尺度上进行长时间序列模拟

案例四:比较多套土壤湿度产品
比较GLDAS、GLEAM和CCI SM

案例五:分析降水~蒸散发-土壤湿度关系
分析降水~蒸散发-土壤湿度的年际变化

专题十二 使用Python处理遥感和模式数据以PKU GIMMS NDVI遥感降水数据和GLDAS数据为例

案例一:结合GIMMS NDVI和陆面模式数据分析干旱影响
获取陆面模式模拟的土壤湿度数据
建立植被生产力与干旱的响应关系
评估不同地区的干旱敏感性

案例二:青藏高原地区干旱对高寒草地生态系统的影响
基于NDVI识别青藏高原历史干旱年份
结合GLDAS模拟的土壤温湿度等数据,分析干旱对植被的影响机制

专题十三 使用Python处理气候变化数据1观测数据

案例一:百年气温趋势:CRU数据

案例二:百年海温趋势:HadSST

案例三:再分析数据处理

ERA5数据气温评估

专题十四 使用Python进行气候诊断分析

在GHCN站点数据基础上
使用Mann-Kendall趋势检验
使用Mann-Kendall突变分析
和Sen's slope估计气候变化趋势
使用小波分析等分析周期

专题十五 使用Python处理气候变化数据2 以CMIP6数据为例

降尺度
Delta方法
百分位校正方法

案例一:计算极端气候指数
案例二:未来气候变化背景下中国地区GPP变化(CMIP6+MOD17+机器学习)
案例三:未来气候变化背景下中国地区土地利用变化

专题十六 使用Python对WRF模式数据后处理

案例一:空间坐标重采样
案例二:风速垂直高度插值
获取风机70和100m高度的风速和风向

专题十七 使用Python运行生态模型 以CN05.1数据和Biome-BGC生态模型为例

1、模型讲解
2、气象数据的准备
3、控制文件生成
4、模式的运行
Muliprocesing 并行运行
5、模式后处理
结果统计
结果可视化(NPP)
注:请提前自备电脑及安装所需软件


更多应用

ArcGIS+ChatGPT双剑合璧:从数据读取到空间分析,一站式掌握GIS与AI融合的前沿科技!-CSDN博客文章浏览阅读908次,点赞18次,收藏10次。结合ArcGIS和GPT的优势,本教程将重点讲解AI大模型应用、ArcGIS工作流程及功能、Prompt使用技巧、AI助力工作流程、AI助力数据读取与处理、AI助力空间分析、AI助力遥感分析、AI助力二次开发、AI助力科研绘图以及ArcGIS与AI的综合应用。https://blog.csdn.net/WangYan2022/article/details/138335545?spm=1001.2014.3001.5502ChatGPT深度科研应用、数据分析及机器学习、AI绘图与高效论文撰写-CSDN博客文章浏览阅读865次,点赞25次,收藏26次。掌握ChatGPT4.0在科研工作中的各种使用方法与技巧,以及人工智能领域经典机器学习算法(BP神经网络、支持向量机、决策树、随机森林、变量降维与特征选择、群优化算法等)和热门深度学习方法(卷积神经网络、迁移学习、RNN与LSTM神经网络、YOLO目标检测、自编码器等)的基本原理及Python、PyTorch代码实现方法。https://blog.csdn.net/WangYan2022/article/details/137681275?spm=1001.2014.3001.5502AI大模型与ChatGPT的碰撞,在GIS、生物、地球、农业、气象、生态、环境科学领域案例应用-CSDN博客文章浏览阅读833次,点赞17次,收藏19次。AI大语言模型带来了新一波人工智能浪潮,可以面向科研选题、思维导图、数据清洗、统计分析、高级编程、代码调试、算法学习、机器/深度学习、大尺度模拟、论文检索、写作、翻译、润色、文献辅助阅读、文献信息提取、辅助论文审稿、新闻撰写、科技绘图、地学绘图(GIS地图绘制)、概念图生成、图像识别、教学课件、教学案例生成、基金润色、专业咨询、文件上传和处理、机器/深度学习训练与模拟、大模型API二次开发等特定任务,生成文本、图片、代码、语音、视频等不同形式的数据、模式和内容,成为不少科研工作者的第二大脑。https://blog.csdn.net/WangYan2022/article/details/137669575?spm=1001.2014.3001.5502★点 击 关 注,获取海量教程和资源

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/831430.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

doxygen 辅助阅读代码的神器

简介 Doxygen是一个文档生成工具,主要用于编写编程语言的软件文档。它最初是为C设计的,但后来增加了对C、C#、Java、Objective-C、Python、IDL(在某些情况下还有PHP、C#和D)的支持。Doxygen可以从一组带有文档注释的源代码文件中…

Mamba3D革新3D点云分析:超越Transformer,提升本地特征提取效率与性能!

DeepVisionary 每日深度学习前沿科技推送&顶会论文分享,与你一起了解前沿深度学习信息! Mamba3D革新3D点云分析:超越Transformer,提升本地特征提取效率与性能! 引言:3D点云分析的重要性与挑战 3D点云…

软件工程毕业设计选题100例

文章目录 0 简介1 如何选题2 最新软件工程毕设选题3 最后 0 简介 学长搜集分享最新的软件工程业专业毕设选题,难度适中,适合作为毕业设计,大家参考。 学长整理的题目标准: 相对容易工作量达标题目新颖 1 如何选题 最近非常多的…

ubuntu ros noetic 编译 ORB_SLAM2 过程记录

1. 连接 eigen库 sudo ln -s /usr/include/eigen3/Eigen /usr/include/Eigen 2. opencvx 修改 CMakeList.txt 中的 find_package open cv版本 修改 include/orbExtracter.h 文件为&#xff1a; //#include <opencv2/opencv.hpp> #include<opencv2/imgproc/imgpro…

【深入浅出MySQL】「性能调优」高性能查询优化MySQL的SQL语句编写

高性能查询优化MySQL的SQL语句编写准则这里写目录标题 总体优化大纲&#xff08;1&#xff09;优化查询性能&#xff1a;通过索引降低全表扫描频率优化方向案例介绍问题分析解决方案建立复合索引建立单独索引 &#xff08;2&#xff09;优化数据表与查询&#xff1a;合理使用非…

【C语言的完结】:最后的测试题

看到这句话的时候证明&#xff1a; 此刻你我都在努力~ 个人主页&#xff1a; Gu Gu Study ​​ 专栏&#xff1a;语言的起点-----C语言 喜欢的一句话&#xff1a; 常常会回顾努力的自己&#xff0c;所以要为自己的努力留下足迹…

PZK via OWF

参考文献&#xff1a; [SMP88] Santis A, Micali S, Persiano G. Non-Interactive Zero-Knowledge with Preprocessing[C]//Advances in Cryptology—CRYPTO’88.[LS90] Lapidot D, Shamir A. Publicly verifiable non-interactive zero-knowledge proofs[C]//Advances in Cry…

解决WordPress无法强制转换https问题

原因&#xff1a;我在用cs的时候&#xff0c;突然老鸟校园网突然断了&#xff0c;客户端cs连不上了&#xff0c;进程也杀不死&#xff0c;cpu占用100%&#xff0c;只能重启&#xff0c;但是重启后我的blog网站打不开了 开始以为是Nginx的问题&#xff0c;重启它说配置出了问题…

python学习笔记B-14:序列结构之元组--元组的访问与遍历

下面是几种元组的方位与遍历方法&#xff1a; t ("hello","python","world") print("原元组",t) print("t[1]",t[1]) print("t[0:3:2]",t[0:3:2]) #切片操作&#xff0c;从索引值0到索引值为2&#xff0c;步长为…

利用大语言模型(KIMI)构建智能产品的控制信息模型

数字化的核心是数字化建模&#xff0c;为一个事物构建数字模型是一项十分复杂的工作。不同的应用场景&#xff0c;对事物的关注重点的不同的。例如&#xff0c;对于一个智能传感器而言&#xff0c;从商业的角度看&#xff0c;产品的信息模型中应该包括产品的类型&#xff0c;名…

修改Ubuntu远程登录欢迎提示信息

无论何时登录公司的某些生产系统&#xff0c;你都会看到一些登录消息、警告或关于你已登录服务器的信息&#xff0c;如下所示。 修改方式 1.打开ubuntu终端,进入到/etc/update-motd.d目录下面 可以发现目录中的文件都是shell脚本, 用户登录时服务器会自动加载这个目录中的文件…

ThreeJS:坐标辅助器与轨道控制器

ThreeJS与右手坐标系 使用ThreeJS创建3D场景时&#xff0c;需要使用一个坐标系来定位和控制对象的位置和方向。 ThreeJS使用的坐标系是右手坐标系&#xff0c;即&#xff1a;X轴向右、Y轴向上、Z轴向前&#xff0c;如下图所示&#xff0c; ThreeJS-右手坐标系 Tips&#xff1a;…

【C++】命名冲突了怎么办?命名空间来解决你的烦恼!!!C++不同于C的命名方式——带你认识C++的命名空间

命名空间 导读一、什么是C?二、C的发展三、命名空间3.1 C语言中的重名冲突3.2 什么是命名空间&#xff1f;3.3 命名空间的定义3.4 命名空间的使用环境3.5 ::——作用域限定符3.6 命名空间的使用方法3.6.1 通过作用域限定符来指定作用域3.6.2 通过关键字using和关键字namespace…

云服务器+ASF实现全天挂卡挂时长

目录 前言正文1.安装下载2.编辑配置文件3.设置Steam社区证书4.启动ASF5.给游戏挂时长6.进阶-ASF自动启动且后台保活 前言 我遇到的最大的问题是&#xff0c;网络问题 其实不然&#xff0c;各大厂商的云服务器后台都有流量监控&#xff0c;意味着依靠一般方法是不能正常访问St…

变量内存和存储单位

基本数据类型及其占位符 存储单位 内存中的数据存储单元是由一个一个的二进制组成的&#xff0c;每个二进制只能存储0 和1 科学家为了更加方便存储更多的数据&#xff0c;把内存中8个二进制分为一组&#xff0c;叫做一个字节&#xff0c;Byte字节是最小的存储单位。(重点⭐⭐⭐…

聚焦Spring后置处理器分析对比

目录 一、理解Spring后置处理器 二、Spring后置处理器在IOC容器和bean对象生命周期的切入时机分析 &#xff08;一&#xff09;IOC 容器生命周期中的切入时机 &#xff08;二&#xff09;Bean 对象生命周期中的切入时机 三、BeanPostProcessor后置器分析 &#xff08;一&…

OpenCV(三)—— 车牌筛选

本篇文章要介绍如何对从候选车牌中选出最终进行字符识别的车牌。 无论是通过 Sobel 还是 HSV 计算出的候选车牌都可能不止一个&#xff0c;需要对它们进行评分&#xff0c;选出最终要进行识别的车牌。这个过程中会用到两个理论知识&#xff1a;支持向量机和 HOG 特征。 1、支…

Redis__事务

文章目录 &#x1f60a; 作者&#xff1a;Lion J &#x1f496; 主页&#xff1a; https://blog.csdn.net/weixin_69252724 &#x1f389; 主题&#xff1a;Redis__事务 ⏱️ 创作时间&#xff1a;2024年05月02日 ———————————————— 这里写目录标题 文章目…

SSM+Vue在线OA办公系统

在线办公分三个用户登录&#xff0c;管理员&#xff0c;经理&#xff0c;员工。 SSM架构&#xff0c;maven管理工具&#xff0c;数据库Mysql&#xff0c;系统有文档&#xff0c;可有偿安装调试及讲解&#xff0c;项目保证质量。需要划到 最底 下可以联系到我。 功能如下&am…

蓝桥杯练习系统(算法训练)ALGO-950 逆序数奇偶

资源限制 内存限制&#xff1a;256.0MB C/C时间限制&#xff1a;1.0s Java时间限制&#xff1a;3.0s Python时间限制&#xff1a;5.0s 问题描述 老虎moreD是一个勤于思考的青年&#xff0c;线性代数行列式时&#xff0c;其定义中提到了逆序数这一概念。不过众所周知我们…