C/C++实现高性能并行计算——1.pthreads并行编程(中)

系列文章目录

  1. pthreads并行编程(上)
  2. pthreads并行编程(中)
  3. pthreads并行编程(下)
  4. 使用OpenMP进行共享内存编程

文章目录

  • 系列文章目录
  • 前言
  • 一、临界区
    • 1.1 `pi`值估计的例子
    • 1.2 找到问题
      • 竞争条件
      • 临界区
  • 二、忙等待
  • 三、互斥量
    • 3.1 定义和初始化互斥锁
    • 3.2 销毁。
    • 3.3 获得临界区的访问权(上锁)
    • 3.4 退出临界区(解锁)
      • 3.5 小节
    • 3.6 改进`pi`值估计的例子
  • 四、忙等待 vs 互斥量
  • 总结
  • 参考


前言

在C++实现高性能并行计算——1.pthreads并行编程(上)一文中介绍了pthreads的基本编程框架,但是不是随便什么程序都像上一文中轻松多线程编程,会遇到许多问题,涉及到许多底层逻辑。本篇文章就是在讲其底层逻辑。


一、临界区

1.1 pi值估计的例子

在这里插入图片描述
并行化该例子:

// pth_pi_wrong.c
#include <stdlib.h>
#include <stdio.h>
#include <pthread.h>#define n 100000000int num_thread;
double sum = 0;void* thread_sum(void* rank);int main(int argc, char* argv[]){long thread;pthread_t* thread_handles;double pi;num_thread = strtol(argv[1], NULL, 10);thread_handles = (pthread_t *)malloc(num_thread * sizeof(pthread_t *));for (thread = 0; thread < num_thread; thread++){pthread_create(&thread_handles[thread], NULL, thread_sum, (void *)thread);}for (thread = 0; thread < num_thread; thread++){pthread_join(thread_handles[thread], NULL);}pi = 4 *sum;printf("Result is %lf\n", pi);free(thread_handles);return 0;
}void* thread_sum(void *rank){long my_rank = (long)rank;double factor;long long i;long long my_n = n / num_thread; //每个线程所要计算的个数,这里理想情况,可以被整除long long my_first_i = my_n * my_rank;long long my_last_i = my_first_i + my_n;if (my_first_i % 2 == 0){factor = 1.0;}else{factor = -1.0;}for (i = my_first_i; i < my_last_i; i++, factor = -factor){sum += factor / (2 * i + 1);}return NULL;
}

运行结果:
在这里插入图片描述在这里插入图片描述

1.2 找到问题

在这里插入图片描述

竞争条件

当多个线程都要访问共享变量或共享文件这样的共享资源时,如果至少其中一个访问是更新操作,那么这些访问就可能会导致某种错误,称之为竞争条件。

临界区

临界区就是一个更新共享资源的代码段,一次只允许一个线程执行该代码段。


二、忙等待

如何进行更新操作,又要保证结果的正确性?——忙等待
使用标志变量flag,主线程将其初始化为0

y = compute(my_rank);
while (flag != my_rank); // 忙等待,要一直等待它的flag等于其rank才会执行下面的操作
x += y; //就是临界区
flag++;

在忙等待中,线程不停地测试某个条件,但实际上,直到某个条件满足之前,这些测试都是徒劳的。
缺点:浪费CPU周期,对性能产生极大的影响。


三、互斥量

在这里插入图片描述pthread_mutex_t 是 POSIX 线程(pthreads)库中用于实现互斥锁(Mutex)的数据类型。互斥锁是并行编程中常用的同步机制,用于控制多个线程对共享资源的访问,确保一次只有一个线程可以访问该资源。

3.1 定义和初始化互斥锁

  • 可以静态初始化:pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;

  • 或动态初始化:使用 pthread_mutex_init() 函数。这个函数提供了一种灵活的方式来设置互斥锁的属性,不同于使用 PTHREAD_MUTEX_INITIALIZER 进行静态初始化。动态初始化允许程序在运行时根据需要创建和配置互斥锁。
    该函数原型:

    int pthread_mutex_init(pthread_mutex_t *mutex,            /*out*/const pthread_mutexattr_t *attr		/*in */);
    
      参数:- mutex:指向 pthread_mutex_t 结构的指针,该结构代表互斥锁。这个互斥锁在调用 pthread_mutex_init() 之前不需要被特别初始化。- attr:指向 pthread_mutexattr_t 结构的指针,该结构用于定义互斥锁的属性。如果传入 NULL,则使用默认属性。返回值:- 成功:函数返回 0。- 失败:返回一个错误码,表示初始化失败的原因。常见的错误码包括:- EINVAL:提供了无效的属性。- ENOMEM:没有足够的内存来初始化互斥锁。
    

3.2 销毁。

使用 pthread_mutex_destroy() 函数销毁互斥锁,释放任何相关资源。这通常在互斥锁不再需要时进行。
该函数原型是

int pthread_mutex_destroy(pthread_mutex_t *mutex);

3.3 获得临界区的访问权(上锁)

使用 pthread_mutex_lock() 函数来锁定互斥锁。如果互斥锁已被其他线程锁定,调用线程将阻塞,直到互斥锁被解锁。
该函数原型:

int pthread_mutex_lock(pthread_mutex_t *mutex);

参数

  • mutex:指向已初始化的 pthread_mutex_t 结构的指针,表示要锁定的互斥锁。

返回值

  • 成功:如果函数成功锁定互斥锁,它返回 0。
  • 失败:返回一个错误码,表明为什么锁定失败。常见的错误码包括:
    • EINVAL:如果互斥锁未正确初始化,会返回此错误。
    • EDEADLK:如果是错误检查互斥锁,并且当前线程已经锁定了这个互斥锁,会返回此错误,指示死锁风险。

3.4 退出临界区(解锁)

使用 pthread_mutex_unlock() 函数来解锁互斥锁,允许其他正在等待的线程获得资源访问权限。
该函数原型:

int phtread_mutex_unloc(pthread_mutex_t* mutex_p);

参数

  • mutex:指向需要解锁的 pthread_mutex_t 结构的指针。该互斥锁应该是先前由调用线程使用 pthread_mutex_lock() 锁定的。

返回值

  • 0:函数成功解锁了互斥锁。
  • 失败:返回一个错误码,表明为什么锁定失败。常见的错误码包括:
    • EINVAL:如果互斥锁没有被正确初始化,或者互斥锁指针无效,将返回此错误。
    • EPERM:如果当前线程不持有该互斥锁的锁定权,即尝试解锁一个它并没有锁定或者根本未被锁定的互斥锁,将返回此错误。

3.5 小节

pthread_mutex_t 是 POSIX 线程(pthreads)库中用于实现互斥锁(Mutex)的数据类型。互斥锁是并行编程中常用的同步机制,用于控制多个线程对共享资源的访问,确保一次只有一个线程可以访问该资源。

互斥锁的基本概念

  • 互斥:互斥锁保证当一个线程访问共享资源时,其他线程必须等待,直到该资源被释放(解锁),从而防止数据冲突和不一致性。
  • 死锁:如果不正确使用互斥锁,可能导致死锁,即两个或多个线程相互等待对方释放资源,结果都无法继续执行。

使用 pthread_mutex_t 类型的互斥锁通常包括以下几个步骤:

  1. 定义和初始化互斥锁
  2. 锁定互斥锁
  3. 访问共享资源
  4. 解锁互斥锁
  5. 销毁互斥锁

下面是使用 pthread_mutex_t 的简单示例:

#include <pthread.h>
#include <stdio.h>pthread_mutex_t lock;  //拿到pthread_mutex_t类型的对象lock,它这里还是个全局变量
int counter = 0;void* increment_counter(void* arg) {pthread_mutex_lock(&lock);   // 锁定互斥锁int i = *((int*) arg);counter += i;                // 修改共享资源printf("Counter value: %d\n", counter);pthread_mutex_unlock(&lock); // 解锁互斥锁return NULL;
}int main() {pthread_t t1, t2;pthread_mutex_init(&lock, NULL); // 初始化互斥锁int increment1 = 1;int increment2 = 2;pthread_create(&t1, NULL, increment_counter, &increment1);pthread_create(&t2, NULL, increment_counter, &increment2);pthread_join(t1, NULL);pthread_join(t2, NULL);pthread_mutex_destroy(&lock); // 销毁互斥锁printf("Final Counter value: %d\n", counter);return 0;
}

注意事项

  • 避免死锁:确保每个锁定的互斥锁最终都会被解锁,特别是在可能引发异常或提前返回的代码段之前。
  • 适当的锁粒度:选择正确的锁粒度很重要。过粗的锁可能导致性能低下,而过细的锁可能增加复杂性和死锁的风险。

互斥锁是保护共享数据和防止并发错误的关键工具,在设计多线程程序时需要仔细管理。

3.6 改进pi值估计的例子

主要是改进线程函数里面访问全局变量的那段代码(也就是临界区)

void* thread_sum(void *rank){long my_rank = (long)rank;double factor;long long i;long long my_n = n / num_thread; //每个线程所要计算的个数,这里理想情况,可以被整除long long my_first_i = my_n * my_rank;long long my_last_i = my_first_i + my_n;//这里定义my_sum是因为不想频繁调用互斥锁的访问临界区的权限(for循环里),所以只在最后将my_sum赋给sum的时候调用访问权限和退出权限double my_sum;  if (my_first_i % 2 == 0){factor = 1.0;}else{factor = -1.0;}for (i = my_first_i; i < my_last_i; i++, factor = -factor){my_sum += factor / (2 * i + 1);}pthread_mutex_lock(&mutex);sum += my_sum;pthread_mutex_unlock(&mutex);//在一个线程函数中只调用一次申请锁和释放锁的条件return NULL;
}

主函数:

#include <stdlib.h>
#include <stdio.h>
#include <pthread.h>#define n 100000000pthread_mutex_t mutex;int num_thread;
double sum = 0;void* thread_sum(void* rank);int main(int argc, char* argv[]){long thread;pthread_t* thread_handles;double pi;num_thread = strtol(argv[1], NULL, 10);thread_handles = (pthread_t *)malloc(num_thread * sizeof(pthread_t *));//初始化互斥锁pthread_mutex_init(&mutex, NULL);for (thread = 0; thread < num_thread; thread++){pthread_create(&thread_handles[thread], NULL, thread_sum, (void *)thread);}for (thread = 0; thread < num_thread; thread++){pthread_join(thread_handles[thread], NULL);}pi = 4 *sum;printf("Result is %lf\n", pi);free(thread_handles);pthread_mutex_destroy(&mutex);return 0;
}

运行结果:
在这里插入图片描述


四、忙等待 vs 互斥量

在这里插入图片描述


总结

  1. 发现问题:线程之间会产生竞争条件

  2. 解决思路:临界区:在更新共享资源的代码段处,一次只允许一个线程执行该代码段。但是如何使得该区域每次只能有一个线程访问(如何使得该区域成为临界区

  3. 解决方法:

    • 忙等待:使用标志变量flag,在线程函数中,每次要更新共享资源的代码处时设置一个判断flag的条件语句,只有当flag满足特定条件,才能让相应的线程进行更新共享资源。
    • 互斥量/锁:
      • 初始化锁(因为互斥锁是pthread库中的一个数据类型,得要初始化,当然也涉及到销毁)
      • 上锁
      • 访问共享内存
      • 解锁
      • 销毁锁
  4. 忙等待 vs 互斥锁:忙等待因为要频繁地执行判断语句,所以效率低。最好使用互斥锁

  5. 在使用互斥锁的时候也尽量避免频繁上锁,解锁操作,这样会印象性能。尽量每个线程只执行一次(这不是绝对,看具体执行什么操作)

  6. 这里也只是讨论了每个线程执行结果没有逻辑上的先后顺序,就像有理数的乘法交换律一样,不管什么顺序乘,结果都一样。有先后顺序的情况将在下一篇文章讨论,就如同矩阵乘法,顺序很重要!

参考

  1. 【团日活动】C++实现高性能并行计算——⑨pthreads并行编程

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/830929.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

windows11安装nginx

1.解压nginx安装包到没有中文的目录 2.双击运行nginx.exe 3.任务管理器查看是否有nginx进程 4.任务管理器->性能->资源监视器 5.网络->侦听端口&#xff0c;查看nginx侦听的端口&#xff0c;这里是90端口

大连宇都环境 | 成都5月水科技大会暨技术装备成果展览会

中华环保联合会水环境治理专业委员会 秘书处 王小雅 13718793867 —— 展位号&#xff1a;A09 —— 一、企业介绍 大连宇都环境成立于2002年&#xff0c;公司20年 MBBR填料产品及工艺技术&#xff0c;&#xff0c;构建了研发、制造、设计、工程、运营链式服务能力&#xff…

数据赋能(73)——数据要素:特征

生产要素中的数据要素具有一系列基本特征&#xff0c;这些特征使得数据在现代经济活动中发挥着越来越重要的作用。数据要素的主要特征如下图所示。 数据已经成为关键的生产要素&#xff0c;数据要素的基本特征可以概括为&#xff1a;虚拟性、非消耗性、非稀缺性、非均质性、排他…

selinux 基础知识

目录 概念 作用 SELinux与传统的权限区别 SELinux工作原理 名词解释 主体&#xff08;Subject&#xff09; 目标&#xff08;Object&#xff09; 策略&#xff08;Policy&#xff09; 安全上下文&#xff08;Security Context&#xff09; 文件安全上下文查看 先启用…

如何解决网络应用运行中的审核问题【系列研究预告】

目前互联网是非常发达的&#xff0c;但是随着技术的发展&#xff0c;有些问题逐渐变得严重。对于一般企业而言&#xff0c;一个比较重要的问题就是审核准确性和成本问题。 比如知乎的审判官&#xff0c;我本人是最早的一批审判官&#xff0c;然而多年下来的经历却很让人感到无…

数据结构—C语言实现双向链表

目录 1.双向带头循环链表 2.自定义头文件&#xff1a; 3.List.cpp 文件 3.1 newnode()函数讲解 3.2 init() 函数 初始化 3.3 pushback()函数 尾插 3.4 pushfront()函数 头插 3.5 popback() 尾删 3.6 popfront() 函数 头删 3.7 insert()函数 在pos之后插入 3.8 popbac…

uniapp 对接 Apple 登录

由于苹果要求App使用第三方登录必须要求接入Apple登录 不然审核不过 所以&#xff1a; 一、勾选苹果登录 二、 设置AppId Sign In Apple 设置完成重新生成描述文件 &#xff01;&#xff01;&#xff01;&#xff01;证书没关系 示例代码&#xff1a; async appleLogin…

Delta lake with Java--将数据保存到Minio

今天看了之前发的文章&#xff0c;居然有1条评论&#xff0c;看到我写的东西还是有点用。 今天要解决的问题是如何将 Delta产生的数据保存到Minio里面。 1、安装Minio&#xff0c;去官网下载最新版本的Minio&#xff0c;进入下载目录&#xff0c;运行如下命令&#xff0c;曾经…

Co-assistant Networks for Label Correction论文速读

文章目录 Co-assistant Networks for Label Correction摘要方法Noise DetectorNoise Cleaner损失函数 实验结果 Co-assistant Networks for Label Correction 摘要 问题描述&#xff1a; 描述医学图像数据集中存在损坏标签的问题。强调损坏标签对深度神经网络性能的影响。 提…

SpringBoot指标监控

一.SpringBoot指标监控_添加Actuator功能 Spring Boot Actuator可以帮助程序员监控和管理SpringBoot应用&#xff0c;比如健康检查、内存使用情况统计、线程使用情况统计等。我 们在SpringBoot项目中添加Actuator功能&#xff0c;即可使用Actuator监控 项目&#xff0c;用法如…

使用YALMIP定义LMI,SEDUMI求解矩阵方程

YALMIP&#xff08;Yet Another MATLAB Package for Modeling and Optimization&#xff09;是一个MATLAB工具箱&#xff0c;用于定义和求解优化问题&#xff0c;包括线性矩阵不等式&#xff08;LMI&#xff09;问题。SEDUMI是一个用于求解LMI问题的求解器&#xff0c;它可以与…

Vitis HLS 学习笔记--S_AXILITE 寄存器及驱动

目录 1. 简介 2. S_AXILITE Registers 寄存器详解 2.1 “隐式”优势 2.2 驱动程序文件 2.3 硬件头文件 2.4 硬件头文件中 SC/COR/TOW/COH 的解释 2.5 驱动控制过程 3. 总结 1. 简介 回顾此博文《Vitis HLS 学习笔记--Syn Report解读&#xff08;1&#xff09;-CSDN博…

瘦身秘籍:如何使用 PyInstaller 打造超小型 Python 可执行文件

你是否曾经尝试过将你的 Python 程序打包成一个可执行文件&#xff0c;却发现生成的文件大得惊人&#xff1f;别担心&#xff0c;本文将教你如何使用 PyInstaller 尽可能减小生成的 onefile 大小&#xff0c;让你的程序轻盈如风&#xff01; 1. 使用虚拟环境 首先&#xff0c…

Python 与 TensorFlow2 生成式 AI(二)

原文&#xff1a;zh.annas-archive.org/md5/d06d282ea0d9c23c57f0ce31225acf76 译者&#xff1a;飞龙 协议&#xff1a;CC BY-NC-SA 4.0 第四章&#xff1a;教授网络生成数字 在前一章中&#xff0c;我们涵盖了神经网络模型的构建基块。在这一章中&#xff0c;我们的第一个项目…

电商技术揭秘四十一:电商平台的营销系统浅析

相关系列文章 电商技术揭秘相关系列文章合集&#xff08;1&#xff09; 电商技术揭秘相关系列文章合集&#xff08;2&#xff09; 电商技术揭秘相关系列文章合集&#xff08;3&#xff09; 文章目录 引言一、用户画像与精准营销用户画像与精准营销的概念用户画像在精准营销中…

正则表达式.java

目录 1.1 正则表达式的概念及演示 正则表达式的作用&#xff1a; 1.2 正则表达式-字符类 1.3 正则表达式-逻辑运算符 1.4 正则表达式-预定义字符 1.5 正则表达式-数量词 1.6 正则表达式练习1 1.7 正则表达式练习2 小结 &#xff1a; ①可以校验字符串是否满足一定的规…

免费通配符证书的申请指南——从申请到启动https

如果您的网站拥有众多二级子域名&#xff0c;那么通配符证书证书是最好的选择。 免费通配符申请流程如下&#xff1a; 1 创建证书服务商账号 首先选择一个提供免费通配符的服务商&#xff0c;打开国产服务商JoySSL官网&#xff0c;创建一个账号&#xff08;注册账号时填写注册…

Android创建快捷方式到桌面

效果图 参考 https://blog.51cto.com/u_16175498/8811197https://blog.51cto.com/u_16175498/8811197 权限 <uses-permission android:name"com.android.launcher.permission.INSTALL_SHORTCUT" /> 实现 if (Build.VERSION.SDK_INT > Build.VERSION_C…

GPG的使用

这里写自定义目录标题 安装加密程序生成加密密钥怎么备份自己的密钥就可以使用公钥加密邮件信息了 安装加密程序 下载gpg4win&#xff1a; https://www.gpg4win.org/index.html 免费的&#xff0c;如果使用的是苹果电脑&#xff0c;使用https://gpgtools.org/。 如果是linux&a…

Python 与 TensorFlow2 生成式 AI(四)

原文&#xff1a;zh.annas-archive.org/md5/d06d282ea0d9c23c57f0ce31225acf76 译者&#xff1a;飞龙 协议&#xff1a;CC BY-NC-SA 4.0 第九章&#xff1a;文本生成方法的崛起 在前几章中&#xff0c;我们讨论了不同的方法和技术来开发和训练生成模型。特别是在第六章“使用 …