什么是 Web3 的生成式 AI?

从 Web 1.0 的静态、单向通信到 Web 2.0 的动态、用户驱动的格局,互联网在二十年的时间里经历了一场显着的转变。现在,当我们站在 Web 3.0 时代的边缘时,我们正在见证更具颠覆性的事物的曙光:生成式人工智能 (AI) 融入我们的数字世界。这项快速发展的技术有望在广阔的互联网范围内重新定义创造力、内容创作和互动。到 2025 年,生成式人工智能的市场预计将达到600 亿美元,生成式人工智能与 Web3 的去中心化功能的高度结合预计将改变我们的在线体验。

解读生成人工智能的机制

了解生成式人工智能意味着研究它如何允许机器创建不同形式的内容,例如文本、图像、声音、视频和代码。人工智能的这一分支使用复杂的神经网络来分析大量数据集并增强人类创造力,使其成为现代技术创新的基石。

生成式人工智能由基础模型推动,基础模型是大型人工智能框架,能够执行多任务操作并执行非标准任务,例如摘要、问答、分类等。即使样本数据有限,这些模型也需要最少的培训才能针对特定应用进行定制。

LTP3JeCM5F8gXbYLlYHVAovTAqovaknhx7ISh086.png

LTP3JeCM5F8gXbYLlYHVAovTAqovaknhx7ISh086.png© 由 金色观察 提供

训练生成式人工智能模型的过程通常涉及监督学习,其中模型被输入人类创建内容的数据集以及相应的标签。它学习模仿和创建反映人类创建的示例的新内容,并以类似的方式对其进行分类。通过利用生成对抗网络 (GAN) 和变分自动编码器 (VAE) 等复杂的神经网络,此功能超越了传统人工智能,从而能够生成各种内容类型。

这些进步不仅增强了人类的创造力,而且还引入了自主内容生成的新途径,特别是在 Web3 的去中心化领域,从而以无限的可能性丰富了数字景观。

Web3 框架内的生成式人工智能

由于 Web3 的生成式人工智能涉及生成式人工智能方法与 Web3 的去中心化原则的融合,以下是这项创新技术的工作原理:

  1. 分散式数据处理:在常规人工智能系统中,数据处理通常发生在集中式服务器上,这意味着它由单个实体控制。在 Web3 的生成人工智能中,数据处理是分散的,这意味着它是在节点网络上进行的,而不是依赖于单个服务器。这通过消除单点控制和故障来增强安全性,因为它符合 Web3 的安全和去中心化性质。

  2. 区块链集成:由于 Web3 利用区块链作为其底层基础设施,因此这种集成保证了人工智能内容生成的每个阶段都记录在开放分类账上。通过作为可靠且不可变的记录,区块链增强了生成人工智能工作流程中的信任和责任。

  3. 用于治理的智能合约:智能合约是自动执行的协议,具有用代码编写的预定义规则。在 Web3 的生成式 AI 背景下,智能合约可以进行分布式治理。用户通过这些自动化合同进行协作并做出决策,确保以自由透明的方法来管理生成人工智能流程。这减少了对单一权威的需求,并营造了更具包容性的决策环境。

  4. 代币化和激励:Web3 引入了代币化,这是指将有价值的资产转换为记录在区块链上的数字代币的过程。生成式人工智能流程可以使用代币来提高用户的参与和贡献。用户收到代币作为验证内容、维护网络或积极参与生成人工智能活动的奖励。这种基于代币的生态系统创建了直接激励结构,鼓励用户参与并提高生成式人工智能系统的整体效率。

用例

生成式 AI 为 Web3 生态系统提供了广泛的应用程序。一些值得注意的用例包括:

去中心化的内容创作

Web3 中的生成式人工智能可用于去中心化的内容创建,涵盖文本、图像、视频等。网络上的用户可以贡献和验证内容,从而培育协作和多样化的数字环境。

NFT 的产生和市场

不可替代代币(NFT)可以使用生成式人工智能算法生成,从而创建独特且稀有的数字资产。Web3 促进了 NFT 市场的创建,这些资产可以在其中安全地交易、购买和出售。

人工智能驱动的治理

生成式人工智能与Web3的治理机制相结合,可以用于去中心化的决策。人工智能算法可以帮助分析提案,并有助于去中心化自治组织(DAO)内的共识构建过程。

协同人工智能开发

Web3 平台可以利用生成式人工智能进行协作式人工智能开发,允许多个用户以去中心化和无需许可的方式为人工智能模型的创建和改进做出贡献。

自动代码生成

在 Web3 开发中使用生成式人工智能有可能使编码的某些方面实现自动化,为开发人员创建更智能、更安全的智能合约、去中心化应用程序 (DApp) 以及与区块链技术相关的其他元素提供支持。

区块链游戏开发

生成式人工智能通过实现游戏资产、环境和叙事的动态创建,为区块链游戏开发带来了突破性的机遇。人工智能模型可以生成复杂的交互式世界和角色,实时适应玩家的行动和决策,从而创造更加身临其境的游戏体验。人工智能驱动的程序内容生成可以产生无限的任务、关卡和谜题变化,确保每个玩家的旅程都是独一无二的。通过将这些功能与 Web3 透明且安全的基础设施集成,开发人员可以构建去中心化游戏,提供游戏内资产的真正所有权、可验证的物品稀缺性以及奖励玩家和创作者的新经济模型。

探索 Web3 生成人工智能的开拓者

考虑到 Web3 的生成式 AI 用例后,以下是实施该创新技术的顶级 Web3 平台:

  1. Decentraland:Decentraland 是一个建立在以太坊区块链上的虚拟世界,正在探索使用生成式 AI 来增强虚拟资产和环境的创建和交互。

  2. SuperRare:SuperRare 是以太坊区块链上的 NFT 艺术平台,正在利用生成人工智能探索数字艺术创作和代币化所有权的新可能性。

  3. InQubeta:InQubeta 是一项当代人工智能和 web3 加密货币计划,利用区块链技术将投资者与寻求初始资金的初创企业联系起来。

  4. Fetch.ai:Fetch.ai是一个去中心化的人工智能平台,结合了机器学习和区块链,使独立代理能够执行任务并进行在线交互。

  5. Augur:Augur 基于去中心化的预测市场系统,该系统使用人工智能算法来提高预测的准确性并验证加密货币、体育和世界事件的结果。

  6. Nexo:通过使用人工智能和机器学习,Nexo 作为一个加密货币借贷平台运营,评估借款人的信用度并最大限度地提高贷款人的利润。

Web3 和生成式 AI 的未来是什么?

人工智能和 Web3 有潜力改变我们在互联网上创建、共享和控制内容的方式。它不仅改变了内容的生产和消费,还改变了在线影响力的格局。

Web3 的协作本质与生成式 AI 的想象力相结合,为进步、包容性和用户赋权提供了无限的前景。

当我们应对不断发展的技术格局时,必须解决道德问题、保护隐私并确保公平分配。生成式人工智能在 Web3 中的影响涵盖娱乐和金融等各个领域,使其成为未来发展和观察的关键领域。

ChatGPT 和 DALL-E 等先驱者在生成式 AI 领域取得了重大飞跃,这两家公司都是由 OpenAI 开发的。ChatGPT 体现了人工智能语言模型的演变,该模型旨在根据用户输入生成文本,从而服务于从客户支持到内容创建的广泛用途。同样,DALL-E 通过从文本描述生成图像,开辟了数字艺术和设计的新领域,展示了生成式人工智能的广阔潜力。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/830683.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

DB-GPT部署验证

一、DB-GPT简介 DB-GPT是一个开源的数据库领域大模型框架。目的是构建大模型领域的基础设施,通过开发多模型管理、Text2SQL效果优化、RAG框架以及优化、Multi-Agents框架协作等多种技术能力,让围绕数据库构建大模型应用更简单,更方便。 GITHU…

找不到msvcr120.dll怎么办,msvcr120.dll丢失的5种修复方法分享

计算机系统在运行某应用程序时无法正常启动,具体表现为缺少了一个至关重要的动态链接库文件——msvcr120.dll。这个DLL文件是微软Visual C Redistributable Package的一部分,对于确保许多基于Windows平台的软件能够顺利运作起着不可或缺的作用。msvcr120…

C、Minimizing the Sum(线性dp)

思路: 用dp[i][j] 来表示前i个数操作了j次的最小和,然后对于每个a[i],我们分别枚举i前面操作了x次以及后面操作了j次,对于每次操作,都是将一段区间全换位区间最小值. 代码: void solve(){int n, k;cin &…

springboot mongodb分片集群事务

前置 mongodb分片集群想要使用事务,需要对应分片没有仲裁节点 代码 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-mongodb</artifactId><version>2.1.0.RELEASE</version></d…

手拉手CentOS 安装 mysql-5.7

MySQL是一种关系型数据库管理系统&#xff0c;关系数据库将数据保存在不同的表中&#xff0c;而不是将所有数据放在一个大仓库内&#xff0c;这样就增加了速度并提高了灵活性。 tar.gz包安装 #如没有安装wget则无法使用&#xff0c;以装&#xff0c;则直接省略该步~&#xff…

JavaScript系列------2

1. JS 数据类型&#xff1a; 基本数据类型&#xff1a;number数字型,string字符串型,boolean布尔型,undefined未定义型,null空类型 引用数据类型&#xff1a;object对象 js 是弱数据类型的语言&#xff0c;只有当我们赋值了才知道是什么数据类型。 声明一个变量未赋值就是 un…

Arthas进阶

这里写自定义目录标题 六、class和classloader6、dump7、classloader 七、monitor/watch/trace/stack等核心命令的使用1、monitor2、watch3、trace4、stack5、tt6、option7、profiler 六、class和classloader 6、dump 将已加载类的字节码文件保存到特定目录&#xff1a;logs/…

js之JSON

json 是一种轻量级的数据交换格式。 json 就是一种在各个编程语言中流通的数据格式&#xff0c;负责不同编程语言中的数据传递和交互。 let data {name:张三,age:18}; console.log(data); // 对象 let str JSON.stringify(data); console.log(str); // json 数据 l…

环形链表题

1.环形链表1 看题&#xff1a;. - 力扣&#xff08;LeetCode&#xff09; 思路1&#xff1a;哈希表 遍历所有节点&#xff0c;每次遍历一个节点时&#xff0c;判断该节点是否被访问过。 可以使用哈希表来存储所有已经访问过的节点。每次到达一个节点&#xff0c;如果该节点已…

Qt | QFrame容器

01、QFrame 一、QFrame 类 1、QFrame类是带有边框的部件的基类,带边框部件的特点是有一个明显的边框,QFrame 类就是用来实现边框的不同效果的(把这种效果称为边框样式),所有继承自 QFrame 的子 类都可以使用 QFrame 类实现的效果。 2、部件通常是矩形的(其他形状的原理…

基于JWT实现的Token认证方案

JSON Web Token是什么&#xff1f; JSON Web Token&#xff08;JWT&#xff09;是目前最流行的跨域身份验证解决方案。 JSON Web Token&#xff08;JWT&#xff09;是一个开放标准&#xff08;RFC 7519&#xff09;&#xff0c;它定义了一种紧凑且自包含的方式&#xff0c;用…

牛客网刷题 | CC1 获取字符串长度

目前主要分为三个专栏&#xff0c;后续还会添加&#xff1a; 专栏如下&#xff1a; C语言刷题解析 C语言系列文章 我的成长经历 感谢阅读&#xff01; 初来乍到&#xff0c;如有错误请指出&#xff0c;感谢&#xff01; 描述 键盘输入一个字符串…

Linux操作系统预备 —— 冯·诺伊曼体系结构

一&#xff0c;什么是冯诺伊曼体系结构&#xff1f;&#xff08;是什么&#xff1f;&#xff09; 上面的图就是冯诺伊曼体系结构的总体简略图&#xff0c;不着急&#xff0c;我们一个一个来看&#xff1a; 1.1 输入输出设备 人们要想用计算机处理数据&#xff0c;首先就要把要…

Vue入门到关门之Vue项目工程化

一、创建Vue项目 1、安装node环境 官网下载&#xff0c;无脑下一步&#xff0c;注意别放c盘就行 Node.js — Run JavaScript Everywhere (nodejs.org) 需要两个命令 npm---->pipnode—>python 装完检查一下&#xff0c;hello world检测&#xff0c;退出crtlc 2、搭建vu…

OpenSSH 漏洞补丁更新笔记

OpenSSH 漏洞补丁更新笔记 相关背景OpenSSH 8.8 以后版本弃用RSA 以及影响centos 更新openssh9.7p1通过rpm包进行安装 Ubuntu更新openssh-9.5p1前置条件下载的源码包导入服务器后操作 相关背景 客户通过第三方扫漏工具发现服务器centos8和Ubuntu22.04有OpenSSH 相关高危漏洞 扫…

重新定义什么是共享办公室,一看即懂

共享办公室&#xff0c;也称为联合办公空间&#xff0c;是一种现代的工作空间模式&#xff0c;它允许不同公司或个体在一个共享的环境下工作&#xff0c;同时提供必要的办公设施和服务。这种模式打破了传统办公室的局限&#xff0c;提供了更高的灵活性和社区感。 共享办公室它通…

单片机排队叫号系统Proteus仿真程序 有取号键和叫号键以及重复叫号键 有注释

目录 1、前言 ​ 2、程序 资料下载地址&#xff1a;单片机排队叫号系统Proteus仿真程序 有取号键和叫号键以及重复叫号键 有注释 1、前言 系统组成&#xff1a;STC89C52RCLcd1602蜂鸣器按键 具体介绍&#xff1a; Lcd1602排队叫号系统&#xff0c;有取号显示窗和叫号显示窗…

ElasticSearch总结2

一、创建索引库&#xff1a;PUT ES中通过Restful请求操作索引库、文档。请求内容用DSL语句来表示。创建索引库和mapping的DSL语法如下&#xff1a; 整个jason 里边&#xff0c;它有一个叫mapping的属性&#xff0c;代表的是映射。映射里边有properties代表就是字段。可以看到这…

Pytest自动化测试框架---(单元测试框架)

unittest是python自带的单元测试框架&#xff0c;它封装好了一些校验返回的结果方法和一些用例执行前的初始化操作&#xff0c;使得单元测试易于开展&#xff0c;因为它的易用性&#xff0c;很多同学也拿它来做功能测试和接口测试&#xff0c;只需简单开发一些功能&#xff08;…

QA测试开发工程师面试题满分问答21: 单元测试、集成测试、系统测试的侧重点是什么?

单元测试、集成测试和系统测试是软件测试中的不同层次和阶段&#xff0c;每个阶段侧重于不同的测试目标和范围。以下是它们的侧重点的简要说明&#xff1a; 单元测试&#xff1a; 单元测试是针对软件中最小的可测试单元&#xff08;通常是函数、方法或模块&#xff09;进行的测…