【Linux系统化学习】死锁 | 线程同步

目录

死锁

死锁的必要条件

避免死锁

线程同步

条件变量

同步概念和竞态条件

条件变量接口

创建和初始化条件变量

等待条件满足

唤醒等待

 毁条件变量

为什么 pthread_cond_wait 需要互斥量?

条件变量使用规范

等待条件代码

给条件发送信号代码


死锁

死锁是指在一组线程中的各个线程均占有不会释放的资源,但因互相申请被其他线程所站用不会释放的资源而处于的一种永久等待状态。(编码疏忽造成的问题)

简单的例子

void *route(void *arg)
{char *id = (char *)arg;while (1){pthread_mutex_lock(&mutex);if (ticket > 0){usleep(1000);printf("%s sells ticket:%d\n", id, ticket);ticket--;//再次申请锁pthread_mutex_lock(&mutex);}else{//再次申请锁pthread_mutex_lock(&mutex);break;}}
}

以上篇文章的抢票代码为例:进程中只含有一个锁,当一个执行流进入临界区时申请加锁,因为只有一个锁且没有被使用所以会加锁成功,在出临界区的时候,又申请加锁,此时唯一的锁已经被申请了,会申请加锁失败,就会被挂起,造成永久等待即死锁。

死锁的必要条件

互斥条件:一个资源每次只能被一个执行流使用(使用锁)
请求与保持条件:一个执行流因请求资源而阻塞时,对已获得的资源保持不放(加锁后不解锁)
不剥夺条件:一个执行流已获得的资源,在末使用完之前,不能强行剥夺(加锁后不可以被强制解锁)
循环等待条件:若干执行流之间形成一种头尾相接的循环等待资源的关系(多执行流多把锁相互申请)

避免死锁

  • 破坏死锁的四个必要条件
  • 加锁顺序一致
  • 避免锁未释放的场景
  • 资源一次性分配

第一个条件就是对上面四个条件中的一个或多个条件破坏掉即可。 死锁的产生是因为在代码过程中使用了锁,那我们在编写程序的时非必要条件下可以不使用锁。


线程同步

在上篇文章线程互斥中的我们提到了一个问题:如果一个线程对锁的竞争能力比较强的话,会一直抢夺公共资源;导致其他线程拿不到这个资源也就是线程饥饿。我们可以在一个线程申请加锁获取到公共资源后解锁,再将其纳入到一个类似队列结构的队尾即可解决这个问题也就是线程同步。

条件变量

当一个线程互斥地访问某个变量时,它可能发现在其它线程改变状态之前,它什么也做不了。
例如:一个线程访问队列时,发现队列为空,它只能等待,只到其它线程将一个节点添加到队列中。这种情况就需要用到条件变量。(一个线程向另一个线程通知消息的方式)

例子:张三在一张桌子上放苹果,李四蒙着眼睛拿桌子上的苹果,桌子含有一个只能服务一个人管理员;当桌子没有苹果的时候,李四会轮询访问管理员有没有苹果,这样即成管理员的资源浪费有没办法让张三放苹果;于是管理员想到一个办法,在桌子上安装一个铃铛;当没有苹果且李四过来拿苹果的时候,管理员会让李四在一旁阻塞等待;当张三放在桌子上的苹果到达一定数量时,管理员会按一下这个铃铛,李四才会拿苹果。这个例子中的铃铛就是一个条件变量

同步概念和竞态条件

  • 同步:在保证数据安全的前提下,让线程能够按照某种特定的顺序访问临界资源,从而有效避免饥饿问题,叫做同步
  • 竞态条件:因为时序问题,而导致程序异常,我们称之为竞态条件。在线程场景下,这种问题也不难理解

条件变量接口

创建和初始化条件变量

pthread_cond_t cond;//定义变量后再初始化
int pthread_cond_init(pthread_cond_t *restrict cond,const pthread_condattr_t *restrict attr);

参数

cond:要初始化的条件变量
attr:NULL

等待条件满足

int pthread_cond_wait(pthread_cond_t *restrict cond,pthread_mutex_t *restrict mutex);

参数

cond:要在这个条件变量上等待
mutex:互斥量

唤醒等待

//唤醒所有线程
int pthread_cond_broadcast(pthread_cond_t *cond);
//唤醒单个线程
int pthread_cond_signal(pthread_cond_t *cond);

 毁条件变量

int pthread_cond_destroy(pthread_cond_t *cond)

简单样例

#include<iostream>
#include<string>
#include<pthread.h>
#include<unistd.h>
using namespace std;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
void* threadRoutine(void* args)
{string name = static_cast<const char*> (args);while(true){pthread_mutex_lock(&mutex);pthread_cond_wait(&cond,&mutex);cout<<"I am a new thread : "<<name<<endl;pthread_mutex_unlock(&mutex);}   
}
int main()
{pthread_t t1,t2,t3;pthread_create(&t1,nullptr,threadRoutine,(void * )"thread_1");pthread_create(&t2,nullptr,threadRoutine,(void * )"thread_2");pthread_create(&t3,nullptr,threadRoutine,(void * )"thread_3");sleep(3);while(true){pthread_cond_signal(&cond);sleep(1);}pthread_join(t1,nullptr);pthread_join(t2,nullptr);pthread_join(t3,nullptr);return 0;
}

 注:

  • 线程在进行等待的时候,会自动释放锁
  • 线程被唤醒的时候,实在临界区内,当线程被唤醒时在pthread_cond_wait返回的时候,要重新申请并持有锁
  • 当线程被唤醒的时候,会重新申请并持有锁本质也是要参与锁的竞争的

为什么 pthread_cond_wait 需要互斥量?

  • 条件等待是线程间同步的一种手段,如果只有一个线程,条件不满足,一直等下去都不会满足,所以必须要有一个线程通过某些操作,改变共享变量,使原先不满足的条件变得满足,并且友好的通知等待在条件变量上的线程。
  • 条件不会无缘无故的突然变得满足了,必然会牵扯到共享数据的变化。所以一定要用互斥锁来保护。没有互斥锁就无法安全的获取和修改共享数据。
  • 按照上面的说法,我们设计出如下的代码:先上锁,发现条件不满足,解锁,然后等待在条件变量上不就行了,如下代码:

// 错误的设计
pthread_mutex_lock(&mutex);
while (condition_is_false) {
pthread_mutex_unlock(&mutex);
//解锁之后,等待之前,条件可能已经满足,信号已经发出,但是该信号可能被错过
pthread_cond_wait(&cond);
pthread_mutex_lock(&mutex);
}
pthread_mutex_unlock(&mutex);
  • 由于解锁和等待不是原子操作。调用解锁之后, pthread_cond_wait 之前,如果已经有其他线程获取到互斥量,摒弃条件满足,发送了信号,那么 pthread_cond_wait 将错过这个信号,可能会导致线程永远阻塞在这个 pthread_cond_wait 。所以解锁和等待必须是一个原子操作。
  • int pthread_cond_wait(pthread_cond_ t *cond,pthread_mutex_ t * mutex); 进入该函数后,会去看条件量等于0不?等于,就把互斥量变成1,直到cond_ wait返回,把条件量改成1,把互斥量恢复成原样

条件变量使用规范

等待条件代码

pthread_mutex_lock(&mutex);
while (条件为假)
pthread_cond_wait(cond, mutex);
修改条件
pthread_mutex_unlock(&mutex);

给条件发送信号代码

pthread_mutex_lock(&mutex);
设置条件为真
pthread_cond_signal(cond);
pthread_mutex_unlock(&mutex);

今天对Linux下线程同步和死锁锁的分享到这就结束了,希望大家读完后有很大的收获,也可以在评论区点评文章中的内容和分享自己的看法;个人主页还有很多精彩的内容。您三连的支持就是我前进的动力,感谢大家的支持!!! 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/830155.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

扭蛋机小程序带来了什么优势?扭蛋机收益攻略

在当下的潮流消费时代&#xff0c;人们对潮玩也日益个性化&#xff0c;扭蛋机作为一种新型的娱乐消费模式&#xff0c;深受大众喜爱。扭蛋机的价格低&#xff0c;各个年龄层的玩家都可以进行购买&#xff0c;潜在玩家量非常大。扭蛋机商品主打热门IP周边等&#xff0c;种类繁多…

【PostgreSQL】Postgres数据库安装、配置、使用DBLink详解

目录 一、技术背景1.1 背景1.2 什么是 DBLink 二、安装配置 DBLink2.1 安装 DBLink2.2 配置 DBLink1. 修改 postgresql.conf2. 修改 pg_hba.conf 三、DBLink 使用3.1 数据准备3.2 DBLink 使用1. 创建 DBLink 连接2. 使用 DBLink 进行查询3. 使用 DBLink 进行增删改4. 使用 DBLi…

python代码实现kmeans对鸢尾花聚类

导入第三方库和模型 from sklearn import datasets import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans2、创建画图函数 def draw_result(train_x, labels, cents, title):n_clusters np.unique(labels).shape[0]#获取类别个数color …

用vue3实现留言板功能

效果图&#xff1a; 代码&#xff1a; <script setup lang"ts"> import { ref } from vue;interface Message {name: string;phone: string;message: string; }const name ref<string>(); const phone ref<string>(); const message ref<st…

Llama 3 安装使用方法

Llama3简介&#xff1a; llama3是一种自回归语言模型&#xff0c;采用了transformer架构&#xff0c;目前开源了8b和70b参数的预训练和指令微调模型&#xff0c;400b正在训练中&#xff0c;性能非常强悍&#xff0c;并且在15万亿个标记的公开数据进行了预训练&#xff0c;比ll…

python——井字棋游戏——登入注册界面

本篇文章只讲解登入和注册页面&#xff0c;在后面的文章中会讲解井字棋游戏&#xff0c;然后把井字棋和登入界面进行连接&#xff0c;整合成一个完整的游戏。 登入注册界面在本篇文章的末尾。 1.实现登入界面 &#xff08;1&#xff09;导入图片 把这张图片存储在与代码路径…

Rundeck(四)安全配置

自动化运维工具rundeck GitHub - rundeck 是java开发的开源自动化服务&#xff0c;具有 Web 控制台、命令行工具和 WebAPI。它使您可以轻松地跨一组节点运行自动化任务&#xff0c;适合运维自动化管理、自动发布管理、运维数据分析等 网站&#xff1a;https://www.rundeck.co…

人人开源框架运行

Getting started renrenio/renren-fast-vue Wiki GitHub 人人开源 1.启动navicat&#xff1a;新建一个数据库renren-fast&#xff0c;字符集为utf-8,utf-8mb3或者utf-8mb4&#xff0c;排序规则不选 2.数据库操作在renren-fast数据库中选择表&#xff0c;运行renren-fast-ma…

LeetCode 每日一题 ---- 【1017.负二进制转换】

LeetCode 每日一题 ---- 【1017.负二进制转换】 1017.负二进制转换方法一&#xff1a;模拟进制转换推广&#xff1a;任意进制转换 1017.负二进制转换 方法一&#xff1a;模拟进制转换 我们平常做进制转换最常用的方法就是辗转相除法&#xff0c;下面的图示分别给出了普通的10…

web自动化测试详细流程和步骤

一、什么是web自动化测试 自动化&#xff08;Automation&#xff09;是指机器设备、系统或过程&#xff08;生产、管理过程&#xff09;在没有人或较少人的直接参与下&#xff0c;按照人的要求&#xff0c;经过自动检测、信息处理、分析判断、操纵控制&#xff0c;实现预期的目…

卷积注意力模块 CBAM | CBAM: Convolutional Block Attention Module

论文名称&#xff1a;《CBAM: Convolutional Block Attention Module》 论文地址&#xff1a;https://arxiv.org/pdf/1807.06521.pdf 我们提出了卷积块注意力模块&#xff08;CBAM&#xff09;&#xff0c;这是一种简单但有效的前馈卷积神经网络注意力模块。给定一个中间特征图…

transformer上手(10)—— 文本摘要任务

文本摘要是一个 Seq2Seq 任务&#xff0c;尽可能保留文本语义的情况下将长文本压缩为短文本。 文本摘要可以看作是将长文本“翻译”为捕获关键信息的短文本&#xff0c;因此大部分文本摘要模型同样采用 Encoder-Decoder 框架。当然&#xff0c;也有一些非 Encoder-Decoder 框架…

prompt提示词:AI英语词典,让AI教你学英语,通过AI实现一个网易有道英语词典

目录 英语词典提问技巧效果图&#xff1a;提示词&#xff1a; 英语词典提问技巧 随着AI工具的出现&#xff0c;学英语也可以变得很简单&#xff0c;大家可以直接通过AI 来帮助自己&#xff0c;提高记忆单词的效率&#xff0c;都可以不需要网易有道词典了&#xff0c;今天我教大…

分布式ID之雪花算法

1. Seata对雪花算法生成ID的改良 滑动验证页面 &#xff08;含代码&讲解&#xff09; Seata基于改良版雪花算法的分布式UUID生成器分析&#xff1a;时间戳和节点ID位置进行了调换。官网&#xff1a;Seata基于改良版雪花算法的分布式UUID生成器分析 | Apache Seata关于新版…

Asp .Net Core 系列:国际化多语言配置

文章目录 概述术语 本地化器IStringLocalizer在服务类中使用本地化 IStringLocalizerFactoryIHtmlLocalizerIViewLocalizer 资源文件区域性回退 配置 CultureProvider内置的 RequestCultureProvider实现自定义 RequestCultureProvider使用 Json 资源文件 设计原理IStringLocali…

第二证券|股息分红和送股哪个好?

在股票投资中&#xff0c;股息分红和分红送股是两种常见的股票分红方法。关于股息分红和送股哪个好&#xff0c;第二证券下面就为我们具体介绍一下。 股息分红和送股哪个好并没有一个绝对的答案&#xff0c;它们只是上市公司向股东分配利润的不同方法。股息分红的好处是投资者…

武汉星起航:挂牌上海股权中心,开启资本新篇章助力跨境电商飞跃

2023年10月30日&#xff0c;武汉星起航电子商务有限公司在上海股权托管交易中心成功挂牌展示&#xff0c;标志着这家在跨境电商领域拥有卓越声誉的企业正式迈入了资本市场的大门。对于武汉星起航来说&#xff0c;这不仅是其发展历程中的一个重要里程碑&#xff0c;更是对其业务…

STM32-TIM定时器与PWM输出

学习目标&#xff1a; 1. 熟练掌握 TIM 的参数配置。 2. 掌握通道的参数配置。 3. 深刻理解 PWM 与功率的关系。 4. 理解 PWM 的原理示意。 一 什么是 PWM 输出 PWM &#xff08; pulse width modulation &#xff09;一种脉冲宽度调节技术。 PWM 的效果是什么样子&#xf…

AOMEI Partition Assistant傲梅分区助手技术员版:专业级的硬盘分区利器

在数字化时代&#xff0c;数据存储和管理变得愈发重要。对于电脑技术员而言&#xff0c;一款功能强大、操作简便的分区工具无疑是提高工作效率的得力助手。而傲梅分区助手技术员版&#xff08;AOMEI Partition Assistant&#xff09;正是这样一款备受赞誉的专业级硬盘分区软件。…

Day23.一刷数据结构算法(C语言版) 39组合总和;40组合总和II;131分割回文串

一、39组合总和 本题是集合里元素可以用无数次&#xff0c;那么和组合问题的差别&#xff0c;其实仅在于对startIndex上的控制 题目链接&#xff1a;组合总和 文章讲解&#xff1a;代码随想录 视频讲解&#xff1a;带你学透回溯算法-组合总和 &#xff08;39.组合总和&#xff…