小龙虾优化算法(Crayfish Optimization Algorithm,COA)

小龙虾优化算法(Crayfish Optimization Algorithm,COA)

  • 前言
  • 一、小龙虾优化算法的实现
    • 1.初始化阶段
    • 2.定义温度和小龙虾的觅食量
    • 3.避暑阶段(探索阶段)
    • 4.竞争阶段(开发阶段)
    • 5.觅食阶段(开发阶段)
  • 二、小龙虾优化算法的流程
  • 三、小龙虾优化算法的在CEC2020测试结果。
    • 3.1 CEC2020部分测试函数描述
    • 3.2 CEC2020部分测试函数三维图像显示
    • 3.3 COA在CEC2020的测试效果
  • 四、matlab代码
  • 五、参考文献


前言

小龙虾优化算法(Crayfish Optimization Algorithm,COA)是2023年9月提出的一种元启发式优化算法。COA的灵感来源于小龙虾的避暑、竞争和觅食行为。这三种行为对应算法的避暑阶段、竞争阶段和觅食阶段。其中,竞争阶段和觅食阶段为小龙虾优化算法的开发阶段,避暑阶段是小龙虾优化算法的探索阶段。COA具有较好的收敛效果,在CEC2020有着较好的优化效果。


提示:本文使用的是迭代次数的代码,没有换成评价次数。
如有疑问可联系尭食

一、小龙虾优化算法的实现

小龙虾优化算法的探索和开发受温度调节,温度是一个随机数。当温度过高时,小龙虾会选择洞穴进行避暑。如果没有其他的小龙虾竞争洞穴,小龙虾会直接进入洞穴,这是小龙虾优化算法的避暑阶段。如果有其他的小龙虾竞争洞穴,则小龙虾会相互竞争,这时小龙虾优化算法的竞争阶段。当温度适宜时,小龙虾优化算法进入觅食阶段。在觅食阶段,小龙虾会根据食物的大小选择直接吃食物或者先撕碎食物再吃食物。其中,小龙虾的进食与觅食量有关。通过温度平衡算法的探索和开发能力,使小龙虾优化算法具有更好的优化效果,能够更快的寻找到一个优异的适应度值。下面是小龙虾优化算法的具体介绍。

1.初始化阶段

在多维优化问题中,每只小龙虾表示一个1× d i m dim dim的矩阵,每列矩阵为一个问题的解决方案。COA的初始化是在上下界之间随机生成 N N N组候选解 X X X N N N是种群大小、 d i m dim dim是种群维数。COA初始化如下:
X = [ X 1 , X 2 , ⋯ , X N ] (1) X = [{X_1},{X_2}, \cdots ,{X_N}]\tag{1} X=[X1,X2,,XN](1) X i , j = l b j + ( u b j − l b j ) × r a n d (2) {X_{i,j}} = l{b_j} + (u{b_j} - l{b_j}) \times rand \tag{2} Xi,j=lbj+(ubjlbj)×rand(2)
其中 l b j lb_j lbj表示第j维的下界, u b j ub_j ubj表示第j维的上界, r a n d rand rand是[0,1]的随机数。

2.定义温度和小龙虾的觅食量

温度的改变会影响小龙虾的行为,使小龙虾进行不同的阶段温度的定义如等式3所示。当温度超过30℃时,小龙虾会选择一个凉爽的地方避暑。在适当的温度下,小龙虾就会进行觅食行为。小龙虾的取食量受温度的影响。小龙虾的取食范围在15~30℃之间,25℃为最好。因此,小龙虾的摄食量可以近似于正态分布,从而使摄食量受到温度的影响。小龙虾摄食量的数学模型和不同温度对应的摄食量如下图所示。
t e m p = r a n d × 15 + 20 (3) temp = rand \times 15 + 20\tag{3} temp=rand×15+20(3)
其中, t e m p temp temp表示小龙虾所在环境的温度。
p = C 1 × ( 1 2 × π × σ ) × exp ⁡ ( − ( t e m p − μ ) 2 2 σ 2 ) (4) p = {C_1} \times ({1 \over {\sqrt {2 \times \pi } \times \sigma )}} \times \exp ( - {{{{(temp - \mu )}^2}} \over {2{\sigma ^2}}})\tag{4} p=C1×(2×π ×σ)1×exp(2σ2(tempμ)2)(4)
其中, µ µ µ是指最适合小龙虾的温度,分别用 σ σ σ C 1 C_1 C1来控制不同温度下小龙虾的摄入量.
Alt

3.避暑阶段(探索阶段)

当温度大于30度,表示温度过高。此时,小龙虾会进入洞穴避暑。洞穴的定义如下所示:
X s h a d e = ( X G + X L ) / 2 (5) {X_{shade}} = ({X_G} + {X_L})/2\tag{5} Xshade=(XG+XL)/2(5)
其中 X G X_G XG表示通过迭代次数所得到的最优位置,XL表示上一代种群更新后获得的最优位置。
小龙虾争夺洞穴是一个随机事件。在COA中,当 r a n d rand rand<0.5,这意味着没有其他的小龙虾争夺洞穴,则小龙虾直接进入洞穴避暑,如下图所示。小龙虾进入洞穴避暑如公式所示:
X i , j t + 1 = X i , j t + C 2 × r a n d × ( X s h a d e − X i , j t ) (6) X_{i,j}^{t + 1} = X_{i,j}^t + {C_2} \times rand \times ({X_{shade}} - X_{i,j}^t)\tag{6} Xi,jt+1=Xi,jt+C2×rand×(XshadeXi,jt)(6)
其中 t t t表示当前迭代次数, t + 1 t+1 t+1表示下一代迭代次数, C 2 C_2 C2为递减曲线。
C 2 = 2 − ( t / T ) (7) {C_2} = 2 - (t/T)\tag{7} C2=2(t/T)(7)
其中, T T T表示最大迭代次数。
在这里插入图片描述

4.竞争阶段(开发阶段)

当温度大于30度, r a n d rand rand≥0.5。这意味着其他的小龙虾也选择了这个洞穴。这时,它们会竞争这个洞穴,如下图所示。它们通过以下公式争夺洞穴。
X i , j t + 1 = X i , j t − X z , j t + X s h a d e (8) X_{i,j}^{t + 1} = X_{i,j}^t - X_{z,j}^t + {X_{shade}}\tag{8} Xi,jt+1=Xi,jtXz,jt+Xshade(8) z = r o u n d ( r a n d × ( N − 1 ) ) + 1 (9) z = round(rand \times (N - 1)) + 1\tag{9} z=round(rand×(N1))+1(9)
其中, z z z表示小龙虾的随机个体。
在这里插入图片描述

5.觅食阶段(开发阶段)

当温度小于等于30时,该温度适合小龙虾进食。这时,小龙虾会去寻找食物觅食。在进食的时候,小龙虾会根据食物的大小选择是否撕碎食物。如果食物大小合适,小龙虾会使用直接摄取食物。如果食物太大,小龙虾会使用鳌足撕碎食物再使用第二第三步行足交替夹取食物摄取。食物的定义为:
X f o o d = X G (10) {X_{food}} = {X_G}\tag{10} Xfood=XG(10)
食物大小的定义为:
Q = C 3 × r a n d × ( f i t n e s s i / f i t n e s s f o o d ) (11) Q = {C_3} \times rand \times (fitnes{s_i}/fitnes{s_{food}})\tag{11} Q=C3×rand×(fitnessi/fitnessfood)(11)
其中 C 3 C_3 C3为食物因子,代表最大的食物,值为常数3。 f i t n e s s i fitness_i fitnessi代表第i只小龙虾的适应度值, f i t n e s s f o o d fitness_{food} fitnessfood代表食物所在位置的适应度值。
Q > ( C 3 + 1 ) / 2 Q>(C3+1)/2 Q>(C3+1)/2,表示食物太大。这时,小龙虾会通过下面公式撕碎食物。
X f o o d = exp ⁡ ( − 1 Q ) × X f o o d (12) {X_{food}} = \exp ( - {1 \over Q}) \times {X_{food}}\tag{12} Xfood=exp(Q1)×Xfood(12)
撕碎食物后,小龙虾会使用第二第三步行足交替夹取食物摄取。为了模拟交替摄食行为,在等式中采用正弦函数和余弦函数的组合来模拟交替过程,如图所示。不仅如此,小龙虾获得的食物也与食物摄入量有关。摄食的等式如下所示:
X i , j t + 1 = X i , j t + X f o o d × p × ( cos ⁡ ( 2 × π × r a n d ) − sin ⁡ ( 2 × π × r a n d ) ) (13) X_{i,j}^{t + 1} = X_{_{i,j}}^t + {X_{food}} \times p \times (\cos (2 \times \pi \times rand) - \sin (2 \times \pi \times rand))\tag{13} Xi,jt+1=Xi,jt+Xfood×p×(cos(2×π×rand)sin(2×π×rand))(13)
Q ≤ ( C 3 + 1 ) / 2 Q≤(C3+1)/2 Q(C3+1)/2,小龙虾会直接向食物移动并进食。等式如下:
X i , j t + 1 = ( X i , j t − X f o o d ) × p + p × r a n d × X i , j t (14) X_{i,j}^{t + 1} = (X_{i,j}^t - {X_{food}}) \times p + p \times rand \times X_{i,j}^t\tag{14} Xi,jt+1=(Xi,jtXfood)×p+p×rand×Xi,jt(14)

二、小龙虾优化算法的流程

步骤1.初始化种群,计算种群的适应度值并获得 X G X_G XG X L X_L XL
步骤2.根据等式3定义小龙虾的生存环境.
步骤3.当温度大于30度且 r a n d rand rand<0.5,COA根据等式6获得新的位置并进入步骤8。
步骤4.当温度大于30度且 r a n d rand rand≥0.5,COA根据等式8获得新的位置并进入步骤8。
步骤5.当温度小于等于30时,COA进入觅食阶段,根据等式4和等式11定义摄食量 p p p和食物大小 Q Q Q
步骤6.如果Q>( C 3 C_3 C3+1)/2,根据等式12撕碎食物。之后通过等式13摄食获得新位置并进入步骤8。。
步骤7.如果Q≤( C 3 C_3 C3+1)/2,通过等式14摄食获得新位置并进入步骤8。。
步骤8.评估种群是否退出循环。如果没有返回步骤2。
步骤9.输出最佳位置的个体。

在这里插入图片描述

三、小龙虾优化算法的在CEC2020测试结果。

3.1 CEC2020部分测试函数描述

名称公式维度变量范围理论最优
F1 F 1 ( x ) = f 1 ( M ( x − o 1 ) ) + F 1 ∗ {F_1}(x) = {f_1}(M(x - {o_1})) + {F_1}* F1(x)=f1(M(xo1))+F130[-100,100]100
F2 F 2 ( x ) = f 11 ( M ( 1000 ( x − o 11 ) 100 ) ) + F 2 ∗ {F_2}(x) = {f_{11}}({\rm{M}}({{1000(x - {o_{11}})} \over {100}})) + {F_2} * F2(x)=f11(M(1001000(xo11)))+F230[-100,100]100
F3 F 3 ( x ) = f 10 ( M ( 600 ( x − o 7 ) 100 ) ) + F 3 ∗ {F_3}(x) = {f_{10}}(M({{600(x - {o_7})} \over {100}})) + {F_3}* F3(x)=f10(M(100600(xo7)))+F330[-100,100]100

3.2 CEC2020部分测试函数三维图像显示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3.3 COA在CEC2020的测试效果

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

四、matlab代码

COA的代码已公布,可自行下载,也欢迎大家进行修改Crayfish Optimization Algorithm

五、参考文献

[1] 贾鹤鸣, 智能优化算法及 MATLAB 实现[M], 清华大学出版社, 2024.
[2] Jia, Heming, Honghua Rao, Changsheng Wen, and Seyedali Mirjalili. Crayfish optimization algorithm[J]. Artificial Intelligence Review. 56(Suppl 2), pp.1919-1979.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/829431.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【誉天战报】3月HCIE战报火热来袭!新增45位同学通过认证!

2024年3月&#xff0c;誉天教育共有45名学员顺利通过了HCIE认证&#xff0c;其中&#xff1a;云计算20人、数通18人、存储5人、云服务2人。让我们一起祝贺他们吧~ 誉天教育是华为优选级授权培训合作伙伴&#xff0c;专业从事华为授权认证课程实战技能培训。连续13年荣获“华为优…

和林曦老师一起读书吧 | 愿我们:只生欢喜不生愁

今天&#xff0c;想和你一起来读书&#xff0c;林曦老师的《只生欢喜不生愁》。    这本书的名字很有意味&#xff0c;它来自于清代《养真集》中的一句话&#xff1a;自古神仙无别法&#xff0c;只生欢喜不生愁。      我们会羡慕这样的状态&#xff1a;只生欢喜不生愁…

018基于SSM的音乐系统网站

018基于SSM的音乐系统/网站 开发环境&#xff1a; Jdk7(8)Tomcat7(8)MysqlIntelliJ IDEA(Eclipse)Maven 数据库&#xff1a; MySQL 技术&#xff1a; SpringSpring mvcMybatisJqueryVideo jsJSPJSTLEasyUI 适用于&#xff1a; 课程设计&#xff0c;毕业设计&#xff0c;学习…

“你需要TrustedInstaller提供的权限才能对此文件进行更改” 解决方案

转载地址 【“你需要TrustedInstaller提供的权限才能对此文件进行更改” 解决方案-CSDN博客】

37.WEB渗透测试-信息收集-企业信息收集(4)

免责声明&#xff1a;内容仅供学习参考&#xff0c;请合法利用知识&#xff0c;禁止进行违法犯罪活动&#xff01; 内容参考于&#xff1a; 易锦网校会员专享课 上一个内容&#xff1a;36.WEB渗透测试-信息收集-企业信息收集&#xff08;3&#xff09;-CSDN博客 关于主域名收…

Git -- 运用总结

文章目录 1. Git2. 基础/查阅2.1 基础/查阅 - git2.2 仓库 - remote2.3 清理 - rm/clean2.4 版本回退 - reset 3. 分支3.1 分支基础 - branch3.2 分支暂存更改 - stash3.3 分支切换 - checkout 4. 代码提交/拉取4.1 代码提交 - push4.2 代码拉取 - pull 1. Git 2. 基础/查阅 2…

(学习日记)2024.05.07:UCOSIII第六十一节:User文件夹函数概览(uCOS-III->Source文件夹)第七部分

写在前面&#xff1a; 由于时间的不足与学习的碎片化&#xff0c;写博客变得有些奢侈。 但是对于记录学习&#xff08;忘了以后能快速复习&#xff09;的渴望一天天变得强烈。 既然如此 不如以天为单位&#xff0c;以时间为顺序&#xff0c;仅仅将博客当做一个知识学习的目录&a…

RISC-V CVA6 在 Linux 下相关环境下载与安装

RISC-V CVA6 在 Linux 下相关环境下载与安装 所需环境与源码下载 CVA6 源码下载 首先&#xff0c;我们可以直接从 GitHub 一次性拉取所有源码&#xff1a; git clone --recursive https://github.com/openhwgroup/cva6.git如果这里遇到网络问题&#xff0c;拉取失败&#x…

Fluent.Ribbon创建Office的RibbonWindow菜单

链接&#xff1a; Fluent.Ribbon文档 优势&#xff1a; 1. 可以创建类似Office办公软件的复杂窗口&#xff1b; 2. 可以应用自定义主题风格界面

实现 <el-cascader> 组件的回显功能

vue A页面&#xff0c;用户填写了el-cascader多层级数据&#xff0c;层级list数据从接口获取&#xff1b; vue B页面&#xff0c;多层级数据要进行回显&#xff0c;接口给到的数据是value值&#xff1b; 直接看demo <template><div><el-cascaderv-model"…

android studio 编译一直显示Download maven-metadata.xml

今天打开之前的项目的时候遇到这个问题:android studio 编译一直显示Download maven-metadata.xml, AI 查询 报错问题&#xff1a;"android studio 编译一直显示Download maven-metadata.xml" 解释&#xff1a; 这个错误通常表示Android Studio在尝试从Maven仓库…

ReactJS中使用TypeScript

TypeScript TypeScript 实际上就是具有强类型的 JavaScript&#xff0c;可以对类型进行强校验&#xff0c;好处是代码阅读起来比较清晰&#xff0c;代码类型出现问题时&#xff0c;在编译时就可以发现&#xff0c;而不会在运行时由于类型的错误而导致报错。但是&#xff0c;从…

中国各银行流动性比例数据集(2000-2022年)

01、数据简介 银行流动性比例是指银行的流动性资产期末余额与流动性负债期末余额之比&#xff0c;用于衡量银行流动性的总体水平。这个比例越高&#xff0c;表明银行偿还短期债务的能力越强&#xff0c;流动性风险越小。 本数据覆盖到城市商业银行、城镇银行、大型商业银行、…

张小泉签约实在智能,用实在Agent打造自动化高

在不少老杭州人的童年记忆里&#xff0c;妈妈裁剪衣服、料理食材、修剪各种物品&#xff0c;用的都是张小泉刀剪。 近日&#xff0c;实在智能与“刀剪第一股”张小泉&#xff08;股票代码&#xff1a;301055.SZ&#xff09;正式达成合作&#xff0c;实在Agent数字员工助力张小…

【工具】-根源上解决VScode打印输出乱码的问题

目录 1 第一步&#xff1a; 改编译命令&#xff0c;保持一致2 第二步&#xff1a; 更改VScode的编码格式-保持一致 1 第一步&#xff1a; 改编译命令&#xff0c;保持一致 看一下你的控制台的编译的命名后缀&#xff0c;有两个关键的参数&#xff0c;如下图&#xff1a; “-f…

不同路径 1 2

class Solution {public int uniquePaths(int m, int n) {int[][] dpnew int[m][n];//记录到每个格子有多少种路径for(int i0;i<m;i) dp[i][0]1;for(int j0;j<n;j) dp[0][j]1;//初始化for(int i1;i<m;i){for(int j1;j<n;j){dp[i][j]dp[i-1][j]dp[i][j-1];}}return …

C++—DAY4

在Complex类的基础上&#xff0c;完成^&#xff0c;<<&#xff0c;>>&#xff0c;~运算符的重载 #include <iostream>using namespace std; class Complex {int rel;int vir; public:Complex(){}Complex(int rel,int vir):rel(rel),vir(vir){}void show(){c…

深度学习中的熵、交叉熵、相对熵(KL散度)、极大释然估计之间的联系与区别

熵的最初来源于热力学。在热力学中&#xff0c;熵代表了系统的无序程度或混乱程度&#xff0c;也可以理解为系统的热力学状态的一种度量。后来被广泛引用于各个领域中&#xff0c;如信息学、统计学、AI等&#xff0c;甚至社会学当中。接下来将大家领略一下深度学习中熵的应用。…

“AI技能,新的职场通行证?揭秘阿里最新职业趋势报告“

随着“五一”劳动节的临近&#xff0c;阿里巴巴发布了一份引人注目的报告——《“AI”职业趋势报告》。这份报告不仅揭示了人工智能&#xff08;AI&#xff09;在各行各业中的关键作用&#xff0c;也预示了一个全新的工作时代正在加速到来。 报告中明确指出&#xff0c;AI的应用…

多路递归的一些算法题

前言 首先我想讲一下&#xff0c;我对多路递归的理解吧&#xff0c;我认为多路递归就是循环中套回调&#xff0c;对于循环有几次就是几叉树&#xff0c;就好比我们常用的二叉树的dfs(node.left) 和 dfs(node.right)等前中后序遍历&#xff0c;也就是for (int i 0; i < 2; …