文本向量化模型新突破——acge_text_embedding勇夺C-MTEB榜首

在人工智能的浪潮中,以GPT4、Claude3、Llama 3等大型语言模型(LLM)无疑是最引人注目的潮头。这些模型通过在海量数据上的预训练,学习到了丰富的语言知识和模式,展现了出惊人的能力。在支撑这些大型语言模型应用落地方面,文本向量化模型(Embedding Model)的重要性也不言而喻。

近期,我在浏览huggingface发现,国产自研文本向量化模型acge_text_embedding(以下简称“acge模型”)已经在业界权威的中文语义向量评测基准C-MTEB(Chinese Massive Text Embedding Benchmark)中获得了第一名。今天这篇文章将围绕以下问题,为大家带来acge_text_embedding模型解读以及应用思考:

• 文本向量化acge模型是什么?原理是什么?
• acge模型能达到什么样的效果,取得了什么样的成绩?
• 文本向量化模型的突破与检索增强生成RAG的联系?

一、文本向量化模型新突破——acge模型

1.1、文本向量化模型

文本向量化模型是自然语言处理(NLP)中的一项核心技术,它可以将单词、句子或图像特征等高维的离散数据转换为低维的连续向量,从而将文本数据转换为计算机能够处理的数值型向量形式。如下图所示,文本向量化模型通过将“家常菜烹饪指南”转换为数值向量,可以将文本信息表示成能够表达文本语义的向量。
在这里插入图片描述

当文本信息被转换为向量形式后,输出的结果能够进一步地为多种后续任务提供有力支持,如:

  • 搜索:向量化使得搜索引擎能够根据查询字符串和文档之间的向量相似性来排名搜索结果,排名靠前的结果通常与查询字符串最相关。
  • 聚类:在文本聚类任务中,向量化可以被用来度量文本之间的相似性,从而将文本分组成不同的类别或簇。
  • 推荐:向量化可帮助构建用户和项目的表示特征,使得推荐系统可以根据用户历史行为或偏好,计算用户向量与项目向量之间的相似度,从而向用户推荐具有相关性的项目。
  • 异常检测:在异常检测任务中,向量化可用于将文本数据映射到一个向量空间中,并通过度量文本向量与正常数据之间的距离或相似性来识别与正常行为不同的异常值。
  • 多样性测量:通过向量化,可以分析文本数据在向量空间中的分布情况,从而评估文本数据的多样性。
  • 分类:向量化能够将文本数据转换为数值型向量表示,从而使得分类算法可以根据文本向量与不同类别之间的相似性来将文本数据分类到最相似的标签或类别中。
    而acge模型则是文本向量化模型的一种。

1.2、acge模型简述

在主体框架上,acge_text_embedding模型主要运用了俄罗斯套娃表征学习(Matryoshka Representation Learning,以下简称MRL)这一灵活的表示学习框架。

在这里插入图片描述

类似于俄罗斯套娃结构,MRL 产生的嵌入向量也是一个嵌套结构,其旨在创建一个嵌套的、多粒度的表示向量,每个较小的向量都是较大向量的一部分,并且可以独立用于不同的任务。在训练时,MRL根据指定维度[64,128,...,2048,3072]的向量来计算多个loss。使得用户在推理时,可以根据自己的实际需求,输入维度参数,来得到指定维度的向量。

在这里插入图片描述

MRL的优化问题可以表示为 min ⁡ { W ( m ) } m ∈ M , θ F 1 N ∑ i ∈ [ N ] ∑ m ∈ M c m ⋅ L ( W ( m ) ⋅ F ( x i ; θ F ) 1 : m ; y i ) \min_{\{W(m)\}_{m \in M}, \theta_F} \frac{1}{N} \sum_{i \in [N]} \sum_{m \in M} c_m \cdot L(W(m) \cdot F(x_i; \theta_F)_{1:m}; y_i) {W(m)}mM,θFminN1i[N]mMcmL(W(m)F(xi;θF)1:m;yi)

其中, L : R L × [ L ] → R + L: \mathbb{R}^{L \times [L]} \rightarrow \mathbb{R}^+ L:RL×[L]R+是多类softmax交叉熵损失函数,而 F ( ⋅ ; θ F ) : X → R d F(\cdot; \theta_F): X \rightarrow \mathbb{R}^d F(;θF):XRd是由参数 θ F \theta_F θF参数化的深度神经网络,N是数据点的数量,L是类别的数量。

这种方法的核心思想是学习不同粒度的信息,允许一个嵌入向量在保持准确性和丰富性的同时,适应不同计算资源的需求,并可以无缝地适应大多数表示学习框架,并且可以扩展到多种标准计算机视觉和自然语言处理任务。

运用MRL技术,实现一次训练,获取不同维度的表征,acge模型实现了从粗到细的层次化表示,从而提供了一种在推理和部署时不需要额外成本的灵活表示。另外,具体实践上,为做好不同任务的针对性学习,acge模型使用策略学习训练方式,显著提升了检索、聚类、排序等任务上的性能;引入持续学习训练方式,克服了神经网络存在灾难性遗忘的问题,使模型训练迭代能够达到相对优秀的收敛空间。

二、acge模型效果评估

2.1、acge模型结果复现

下面我们对acge模型进行结果复现,acge模型提供了预训练好的模型供试用与性能复现,首先安装sentence_transformers依赖:

!pip install --upgrade sentence_transformers

安装完成后,我们可以将源文本source_text设置为“家常菜烹饪指南”,将想要计算相似度的目标文本target_text设置为[“西红柿炒鸡蛋做法”, “农家小炒肉做法”, “上海本帮菜肴传统烹饪技艺”, “汽车维修指南——检测、维修、拆装与保养”]进行测试:

from sentence_transformers import SentenceTransformer# 若无法访问huggingface,可以在先离线下载模型到本地
model = SentenceTransformer('acge_text_embedding') 
source_text = ["家常菜烹饪指南"]
target_text = ["西红柿炒鸡蛋做法", "农家小炒肉做法", "上海本帮菜肴传统烹饪技艺", "汽车维修指南——检测、维修、拆装与保养"]
embs1 = model.encode(source_text, normalize_embeddings=True)
embs2 = model.encode(target_text, normalize_embeddings=True)
similarity = embs1 @ embs2.T
print(similarity)

也可以通过huggingface上给的API来进行试用:
在这里插入图片描述
最终计算结果如下:

西红柿炒鸡蛋做法:0.495
农家小炒肉做法:0.618
上海本帮菜肴传统烹饪技艺:0.581
汽车维修指南——检测、维修、拆装与保养:0.277

其中,数值代表了表示源文本与目标文本之间的语义相关性,相似度值越接近于1,文本之间的语义相关性越强,在这个例子中,我们可以看到不同领域的文本与源文本 “家常菜烹饪指南” 之间的相似度评估结果。
在这里插入图片描述

对于与烹饪相关的文本(如 “西红柿炒鸡蛋做法”、“农家小炒肉做法”、“上海本帮菜肴传统烹饪技艺”),文本向量化模型表现出了较高的相似度值,这说明了该模型在捕捉烹饪领域文本之间的语义关联性方面的有效性。这种模型对于具有相似主题或语义的文本能够提供准确的相似度评估,这对于文本分类、推荐系统等任务具有重要意义。然而,对于与汽车维修相关的文本,相似度值较低,这是因为该文本与源文本的语义相关性较低。这突显了该模型的另一个优势,即其能够根据文本内容捕捉不同领域的语义特征,从而对文本进行有效的区分。

这说明acge模型能够有效地从文本中提取语义特征,并将其转化为向量表示,并且能够对文本之间的语义相关性进行准确的度量。

2.2、C-MTEB评估复现

C-MTEB是一个全面评估中文向量化模型通用性的基准,其收集35个公开可用的数据集,涵盖了六大类任务,收集了35个公开可用的中文数据集,这些数据集涵盖了分类、聚类、检索、排序、文本相似度、STS等多种任务类型,为中文向量化模型的研究提供了统一的评估标准和有力的支持。

下面复现acge模型在C-MTEB的效果,首先使用pip安装C_MTEB依赖:

pip install -U C_MTEB

然后输入以下代码对acge_text_embedding进行评估:

import torch
import argparse
import functools
from C_MTEB.tasks import *
from typing import List, Dict
from sentence_transformers import SentenceTransformer
from mteb import MTEB, DRESModelclass RetrievalModel(DRESModel):def __init__(self, encoder, **kwargs):self.encoder = encoderdef encode_queries(self, queries: List[str], **kwargs) -> np.ndarray:input_texts = ['{}'.format(q) for q in queries]return self._do_encode(input_texts)def encode_corpus(self, corpus: List[Dict[str, str]], **kwargs) -> np.ndarray:input_texts = ['{} {}'.format(doc.get('title', ''), doc['text']).strip() for doc in corpus]input_texts = ['{}'.format(t) for t in input_texts]return self._do_encode(input_texts)@torch.no_grad()def _do_encode(self, input_texts: List[str]) -> np.ndarray:return self.encoder.encode(sentences=input_texts,batch_size=512,normalize_embeddings=True,convert_to_numpy=True)def get_args():parser = argparse.ArgumentParser()parser.add_argument('--model_name_or_path', default="acge_text_embedding", type=str)parser.add_argument('--task_type', default=None, type=str)parser.add_argument('--pooling_method', default='cls', type=str)parser.add_argument('--output_dir', default='zh_results',type=str, help='output directory')parser.add_argument('--max_len', default=1024, type=int, help='max length')return parser.parse_args()if __name__ == '__main__':args = get_args()encoder = SentenceTransformer(args.model_name_or_path).half()encoder.encode = functools.partial(encoder.encode, normalize_embeddings=True)encoder.max_seq_length = int(args.max_len)task_names = [t.description["name"] for t in MTEB(task_types=args.task_type,task_langs=['zh', 'zh-CN']).tasks]TASKS_WITH_PROMPTS = ["T2Retrieval", "MMarcoRetrieval", "DuRetrieval", "CovidRetrieval", "CmedqaRetrieval","EcomRetrieval", "MedicalRetrieval", "VideoRetrieval"]for task in task_names:evaluation = MTEB(tasks=[task], task_langs=['zh', 'zh-CN'])if task in TASKS_WITH_PROMPTS:evaluation.run(RetrievalModel(encoder), output_folder=args.output_dir, overwrite_results=False)else:evaluation.run(encoder, output_folder=args.output_dir, overwrite_results=False)

https://huggingface.co/spaces/mteb/leaderboard上可以看到,acge模型已经在目前业界最全面、最权威的中文语义向量评测基准C-MTEB(Chinese Massive Text Embedding Benchmark)的榜单中获得了第一名的成绩。
在这里插入图片描述

由上表可以看到,acge_text_embedding模型在“Classification Average (9 datasets)”这一列中,acge_text_embedding取得了72.75的分数,显示出在文本分类任务上的优秀性能,在“Average (35 datasets)”这一列中取得了69.07的最高分数,表明在多个数据集上的综合出色表现,另外其相对适中的模型大小和内存大小,在模型规模和计算效率方面达到了良好的平衡

与Baichuan-text-embedding相比,它在性能上更为出色,同时在处理多样化任务时具有更高的灵活性。而与阿里云的OpenSearch-text-hybrid相比,acge_text_embedding的通用性更强,能够适用于多种文本处理任务。

除此之外,据合合信息开发团队成员介绍,相比于传统的预训练或微调垂直领域模型,acge模型支持在不同场景下构建通用分类模型、提升长文档信息抽取精度,且应用成本相对较低,可帮助大模型在多个行业中快速创造价值,为构建新质生产力提供强有力的技术支持。

三、文本向量化模型的突破与检索增强生成RAG

截至今天,以GPT4、Claude3、Llama 3等大型语言模型在各种任务上已经表现得越来越为出色,然而,在应用当中仍然存在一定局限性:

  • 知识的局限性:现有的主流大模型的训练集基本都是构建于网络公开的数据,但是当询问某个最新事件的细节或者关于特定领域的深入知识时,虽然模型会努力生成一个答案,但由于它并没有直接接触过这个事件的相关信息,其细节并不准确。
  • 幻觉问题:所有的AI模型的底层原理都是基于数学概率,其模型输出实质上是一系列数值运算,大模型也不例外,所以它有时候会一本正经地胡说八道,这种幻觉问题非常容易导致信息的误判
  • 数据安全性:对于企业来说,数据安全至关重要,没有企业愿意承担数据泄露的风险,将自身的私域数据上传第三方平台进行训练。

为了应对这类应用场景,检索增强生成模型RAG应运而生,RAG模型的核心思想是在生成阶段引入检索机制,从预定义的知识库中检索相关信息,并将其合并到生成的文本中。这种方式能够弥补LLM在特定领域或最新知识方面的不足,从而提高了生成文本的准确性和相关性。其主要流程如下:
在这里插入图片描述

在RAG流程中,向量化模型负责将文档集合中的信息编码成向量表示,并且在用户查询时帮助检索出最相关的文档片段,这些文档片段的内容被并入用户输入中,并指导大语言模型基于这些文档片段生成回应。

用户可能会提出类似于“西红柿炒鸡蛋需要放糖吗?放多少合适?”这样的问题。在这种情况下,向量化模型可以把各种食材、烹饪技巧、口味偏好等关键特征翻译成机器能够理解的“语言”,然后捕捉并理解它们之间的关系,比如它们常常一起出现在哪些菜谱中,这些菜谱又有着怎样的口味特点。这样,通过构建相关领域核心概念间的关联关系,RAG就能轻松地在海量的烹饪数据中检索到相关的信息,从而有更大的机会检索到与用户查询匹配的最相关文档片段。最终生成的答案就更准确、权威,并且更能满足用户的需求。

acge模型正是这样一种向量化模型,其具备良好的文本理解能力和表示学习能力,能够将文档的语义信息转化为高质量的向量表示有效地捕捉文档的语义和内容信息,从而帮助模型准确地检索到与查询相关的文档片段。

随着acge模型在文本向量化任务上的提升,可以预见的是,幻觉和时效性的问题将得到进一步解决,大模型的可用性也将得到了有效提升,从而更好为诸如金融、咨询、教育等行业的智能客服、知识问答、合规风控、营销顾问等场景提供加持。

在这里插入图片描述

可以说,合合信息在深研智能文档处理领域之后,再次突破了文本向量化领域,达到了文本向量化模型的新高度。合合信息TextIn智能文字识别产品基于自研的文字识别技术、智能文档处理技术,能够快速将纸质文档或图片中的文字信息转化为计算机可读的文本格式,在纸质文档电子化、办公文档/报表识别、教育类文本识别、快递面单识别、切边增强、弯曲矫正、阴影处理、印章检测、手写擦除等诸多场景中提供更好的文档管理解决方案,帮助企业实现数字化转型和自动化管理。

欢迎登录textin官网了解详情:https://www.textin.com/?from=market-csdn-cmteb

数十年前,图灵抛出的时代之问“Can machines think?”将人工智能从科幻拉至现实,奠定了后续人工智能发展的基础。之后,无数计算机科学的先驱开始解构人类智能的形成,希望找到机器智能的蛛丝马迹。时至今日,我们又站在了一个新的起点上,机器不仅能够“思考”,更能够通过学习新知识和私有知识库,与我们进行自然而流畅的对话。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/828092.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

文件操作(1)

为什么使⽤⽂件? 如果没有⽂件,我们写的程序的数据是存储在电脑的内存中,如果程序退出,内存回收,数据就丢失了,等再次运⾏程序,是看不到上次程序的数据的,如果要将数据进⾏持久化的…

各平台奇怪问题备忘录

微信小程序 小程序报错Page 页面路径 has not been register yet 描述:uniapp做微信小程序开发时,新增某页面后,小程序跳转该页面报错Page 页面路径 has not been register yet 已知:page.json已添加该页面,小程序a…

B端设计实战:基于角色属性的权限设计

编辑导读:“权限控制”是中后台的基础能力,用于管控操作人员在平台内可做的事项内容。即通过权限控制,可以决定哪些人在平台内可以做哪些事。本文作者围绕角色&属性的权限设计展开分析,希望对你有帮助。 Hello,我是一名交互设计师。 随着3月暖春的即将到来,苏州的疫…

bugku-杂项-社工进阶收集

下载附件 得到图片 利用百度地图查找 这里得到地点名称大雁塔音乐喷泉 陕西省西安市,大雁塔北广场 打开高德地图 来到大雁塔北广场 因为在北广场,所以地铁站为大雁塔站 开始分析 坐七站到大雁塔站,即始发站为韦曲南站 因为始发站离她家800米&…

高频前端面试题汇总之HTML篇

1. src和href的区别 src和href都是用来引用外部的资源,它们的区别如下: src: 表示对资源的引用,它指向的内容会嵌入到当前标签所在的位置。src会将其指向的资源下载并应⽤到⽂档内,如请求js脚本。当浏览器解析到该元素…

34. BI - 美国大学生足球队的 GCN 案例

本文为 「茶桁的 AI 秘籍 - BI 篇 第 34 篇」 文章目录 美国大学生足球队 Embedding(GCN) Hi,你好。我是茶桁。 在上一节课中,因为需要,我们先是回顾了一下 Graph Embedding,然后跟大家讲解了 GCN 以及其算…

linux驱动-CCF-0基础

1. 时钟设备 晶振:提供基础时钟源的(可分为有源晶振、无源晶振两种); PLL: 用于倍频的锁相环; mux: 用于多路时钟源选择; Divider: 用于分频的; gate: 用于时钟使能的与门电路等 2. CCF…

Python读写文本URL蓝牙WIFI自动连接电子名片位置坐标智能海报等NDEF标签

本示例使用的发卡器:https://item.taobao.com/item.htm?id615391857885&spma1z10.5-c.w4002-21818769070.11.60ad789erlonvk 近场通信(Near Field Communication,简称NFC),是一种新兴的技术&…

技术速递|Java on Azure Tooling 3月更新 - Java on Azure 开发工具未来六个月路线图发布

作者:Jialuo Gan - Program Manager, Developer Division At Microsoft 排版:Alan Wang 大家好,欢迎阅读 Java on Azure 工具的三月更新。在本次更新中,我们将分享未来几个月对 Java on Azure 开发工具的投资。此外,我…

Redis入门到通关之数据结构解析-Dict

文章目录 概述构成Dict的扩容Dict的rehash总结 欢迎来到 请回答1024 的博客 🍓🍓🍓欢迎来到 请回答1024的博客 关于博主: 我是 请回答1024,一个追求数学与计算的边界、时间与空间的平衡,0与1的延伸的后端开…

SpringBoot引入第三方jar包或本地jar包

idea2018创建spring boot项目 New Project窗口选择Spring Initializr Type选择Maven(Generate…),有两个Maven选择这一个。 勾选Spring Web。 pom.xml中version改成2.5.10。 在resources中新建jar目录,将第三方jar包fastjson2-2.0.47.jar放入其中。&#xff08…

国产FTP文件传输服务器需要具备哪些关键特性?

国产FTP文件传输服务器是指根据中国国内信息技术创新(信创)的要求和标准,自主研发的文件传输服务器软件。这类软件旨在替代传统的FTP服务器,以更好地适应国产化和信息安全的需要。国产FTP文件传输服务器通常需要具备以下要求&…

【ensp】网关冗余vrrp实验

基础文字知识复习时,添加,下文仅拓扑以及核心配置以及结果分析 冗余路由器 核心代码: int g0/0/0 [R1-GigabitEthernet0/0/0]vrrp vrid 1 virtual-ip 192.168.10.1 ###设置虚拟ip [R1-GigabitEthernet0/0/0]vrrp vrid 1 priority 120 …

零碳家庭 “光”的力量

有行业专家乐观预测,在供给充足、基础设施建设与时俱进的情况下,2025年,我国新能源汽车市场的占有率将会达到50%,2030年更有望突破90%的大关。为了方便新能源汽车的出行,在家中安装一个智能充电桩是越来越多驾驶者的选…

分类预测 | Matlab实现RIME-BP霜冰优化BP神经网络多特征分类预测

分类预测 | Matlab实现RIME-BP霜冰优化BP神经网络多特征分类预测 目录 分类预测 | Matlab实现RIME-BP霜冰优化BP神经网络多特征分类预测分类效果基本介绍程序设计参考资料 分类效果 基本介绍 1.RIME-BP霜冰优化BP神经网络多特征分类预测(Matlab实现完整源码和数据&a…

免杀技术之白加黑的攻击防御

一、介绍 1. 什么是白加黑 通俗的讲白加黑中的白就是指被杀软列入到可信任列表中的文件。比如说微软自带的系统文件或者一些有有效证书签名的文件,什么是微软文件,或者什么是有效签名文件在后面我们会提到他的辨别方法。黑就是指我们自己的文件,没有有…

【MCU】栈溢出问题

项目场景: 硬件:STM32F407,操作系统:rt_thread master分支 问题描述 问题栈溢出 id 499 ide 00 rtr 00 len 8 9 Function[rt_completion_wait] shall not be used in ISR (0) assertion failed at function:rt_completion_wait,…

屏幕状态自动检测+鼠标自动操作

目录 一、写在前面 1.1适用场景 1.2涉及到的库 二、函数库 2.1pyautogui-屏幕截图&鼠标操作 2.1.1屏幕截图screenshot函数 2.1.2鼠标移动及单击 2.2Opencv-模板匹配 2.2.1matchTemplate函数 2.2.2minMaxLoc函数 2.2.3相关代码 2.3base64-图片转base64 2.3.1在线…

Spring MVC和Spring Boot

上节已经提到过请求,这次梳理响应。 响应 响应基本上都要被Controller所托管,告诉Spring帮我们管理这个代码,我们在后面需要访问时,才可以进行访问,否则将会报错。并且其是由RestController分离出来的,Re…

java使用trim方法和replaceAll方法去除空格之后,还存在空格

今天使用其他人的一个功能,发现生成的映射少了一个,后面去代码里面debug发现是字符串中左边空格没有去除导致。查看代码,里面是使用了字符串.trim().replaceAll(" ", "")去除空格的。这个代码虽然能去除(半角…