CountDownLatch倒计时器源码解读与使用

🏷️个人主页:牵着猫散步的鼠鼠 

🏷️系列专栏:Java全栈-专栏

🏷️个人学习笔记,若有缺误,欢迎评论区指正 

目录

1. 前言

2. CountDownLatch有什么用

3. CountDownLatch底层原理

3.1. countDown()方法

3.2. await()方法

4. CountDownLatch的基本使用

5. 总结


1. 前言

在很多的面经中都看到过提问 CountDownLatch 的问题,正好我们最近也在梳理学习AQS(抽象队列同步器)、CAS操作等知识,而 CountDownLatch 又是JUC包下一个比较常见的同步工具类,我们今天就继续来学一下这个同步工具类!

2. CountDownLatch有什么用

我们知道AQS是专属于构造锁和同步器的一个抽象工具类,基于它Java构造出了大量的常用同步工具,如ReentrantLock、Semaphore、ReentrantReadWriteLock、SynchronousQueue等等,我们今天的主角CountDownLatch同样如此。

CountDownLatch(倒时器)允许N个线程阻塞在同一个地方,直至所有线程的任务都执行完毕。CountDownLatch 有一个计数器,可以通过countDown()方法对计数器的数目进行减一操作,也可以通过await()方法来阻塞当前线程,直到计数器的值为 0。

这个就很类似我们的Moba类游戏的游戏加载过程,所有玩家几乎是一起进入游戏,加载快的玩家要等待加载慢的玩家,只有当全部玩家加载完成才能进入游戏,而CountDownLatch就类似于这个过程中的发令枪。

3. CountDownLatch底层原理

想要迅速了解一个Java类的内部构造,或者使用原理,最快速直接的办法就是看它的源码,这是很多初学者比较抵触的,会觉得很多封装起来的源码都晦涩难懂,诚然很多类内部实现是复杂,我也是慢慢从刚开始阅读Mybatis源码,到后来阅读JDK多线程相关的源码,尝试培养自己看源码的习惯,硬着头皮看段时间还是有不少收获的。

好的,我们直接进入CountDownLatch内部去看看它的底层原理吧

//几乎所有基于AQS构造的同步类,内部都需要一个静态内部类去继承AQS
private static final class Sync extends AbstractQueuedSynchronizer {private static final long serialVersionUID = 4982264981922014374L;Sync(int count) {setState(count);}int getCount() {return getState();}}
private final Sync sync;
//构造方法中初始化count值
public CountDownLatch(int count) {if (count < 0) throw new IllegalArgumentException("count < 0");this.sync = new Sync(count);
}

是不是很熟悉?对又是Sync,与 Semaphore信号量一样,几乎所有基于AQS构造的同步类,内部都需要一个静态内部类去继承AQS

3.1. countDown()方法

//核心方法,内部封装了共享模式下的线程释放public void countDown() {//内部类Sync,继承了AQSsync.releaseShared(1);}//AQS内部的实现public final boolean releaseShared(int arg) {if (tryReleaseShared(arg)) {//唤醒后继节点doReleaseShared();return true;}return false;}   

在CountDownLatch中通过countDown来减少倒计时数,这是最重要的一个方法,我们继续跟进源码看到它通过releaseShared()方法去释放锁,这个方法是AQS内部的默认实现方法,而在这个方法中再一次的调用了tryReleaseShared(arg),这是一个AQS的钩子方法,方法内部仅有默认的异常处理,真正的实现由CountDownLatch内部类Sync完成,如下

// 对 state 进行递减,直到 state 变成 0;
// 只有 count 递减到 0 时,countDown 才会返回 true
protected boolean tryReleaseShared(int releases) {// 自选检查 state 是否为 0for (;;) {int c = getState();// 如果 state 已经是 0 了,直接返回 falseif (c == 0)return false;// 对 state 进行递减int nextc = c-1;// CAS 操作更新 state 的值if (compareAndSetState(c, nextc))return nextc == 0;}
}

当这个tryReleaseShared函数返回true时,也就是state扣减到了零,就会调用doReleaseShared唤醒CLH队列中阻塞等待的线程

3.2. await()方法

除了countDown()方法外,在CountDownLatch中还有一个重要方法就是await,在多线程环境下,线程的执行顺序并不一致,因此,对于一个倒时器也说,先开始的线程应该阻塞等待直至最后一个线程执行完成,而实现这一效果的就是await()方法!

// 等待
public void await() throws InterruptedException {sync.acquireSharedInterruptibly(1);
}
// 带有超时时间的等待
public boolean await(long timeout, TimeUnit unit)throws InterruptedException {return sync.tryAcquireSharedNanos(1, unit.toNanos(timeout));
}

其中await()方法可以配置带有时间参数的,表示最大阻塞时间,当调用 await() 的时候,我们会调用aqs的一个模板方法acquireSharedInterruptibly(arg),如下:

public final void acquireSharedInterruptibly(int arg)throws InterruptedException {if (Thread.interrupted())throw new InterruptedException();if (tryAcquireShared(arg) < 0)doAcquireSharedInterruptibly(arg);}

 Thread.interrupted()为判断线程书否为中断状态,如果为中断状态,抛出中断异常,否则会调用tryAcquireShared(arg)方法,tryAcquireShared方法为AQS的钩子函数,由静态内部类Snyc实现,如下

protected int tryAcquireShared(int acquires) {return (getState() == 0) ? 1 : -1;}

也就是说,当前state = 0就返回1,也就不会执行doAcquireSharedInterruptibly(arg),直接放行没有堵塞。否则会执行doAcquireSharedInterruptibly(arg)这个方法,这个方法内部主要是将当前线程加入CLH队列阻塞等待。

4. CountDownLatch的基本使用

由于await的实现步骤和countDown类似,我们就不贴源码了,大家自己跟进去也很容易看明白,我们现在直接来一个小demo感受一下如何使用CountDownLatch做一个倒时器

public class Test {public static void main(String[] args) throws InterruptedException {// 创建一个倒计数为 3 的 CountDownLatchCountDownLatch latch = new CountDownLatch(3);Thread service1 = new Thread(new Service("3", 1000, latch));Thread service2 = new Thread(new Service("2", 2000, latch));Thread service3 = new Thread(new Service("1", 3000, latch));service1.start();service2.start();service3.start();// 等待所有服务初始化完成latch.await();System.out.println("发射");}static class Service implements Runnable {private final String name;private final int timeToStart;private final CountDownLatch latch;public Service(String name, int timeToStart, CountDownLatch latch) {this.name = name;this.timeToStart = timeToStart;this.latch = latch;}@Overridepublic void run() {try {Thread.sleep(timeToStart);} catch (InterruptedException e) {e.printStackTrace();}System.out.println(name);// 减少倒计数latch.countDown();}}
}

输出结果

3
2
1
发射

 执行结果体现出了倒计时的效果每隔1秒进行3,2,1的倒数;其实除了倒计时器外CountDownLatch还有另外一个使用场景:实现多个线程开始执行任务的最大并行性

多个线程在某一时刻同时开始执行。类似于赛跑,将多个线程放到起点,等待发令枪响,然后同时开跑。

具体做法是: 初始化一个共享的 CountDownLatch 对象,将其计数器初始化为 1 (new CountDownLatch(1)),多个线程在开始执行任务前首先 coundownlatch.await(),当主线程调用 countDown() 时,计数器变为 0,多个线程同时被唤醒。

public class Test {public static void main(String[] args) throws InterruptedException {CountDownLatch countDownLatch = new CountDownLatch(1);for (int i = 0; i < 5; i++) {new Thread(() -> {try {System.out.println("5位运动员就位!");//等待发令枪响countDownLatch.await();System.out.println(Thread.currentThread().getName() + "起跑!");} catch (InterruptedException e) {e.printStackTrace();}}).start();}// 裁判准备发令Thread.sleep(2000);//发令枪响countDownLatch.countDown();}
}

 输出结果

5位运动员就位!
5位运动员就位!
5位运动员就位!
5位运动员就位!
5位运动员就位!
Thread-0起跑!
Thread-3起跑!
Thread-4起跑!
Thread-1起跑!
Thread-2起跑!

5. 总结

CountDownLatch 是一个多线程同步辅助类,它允许一个或多个线程等待一系列操作在其他线程中完成。这个机制类似于一场赛跑,选手们在起跑线准备,等待发令枪响后才能开始比赛。在 CountDownLatch 的场景中,线程们等待一个共同的信号,只有当计数器降至零时,它们才能继续执行。

CountDownLatch 提供了两个主要方法:countDown() 和 await()。countDown()方法用于将计数器减一,而 await() 方法会阻塞调用线程,直到计数器达到零。这种机制确保了所有线程都会等待必要的操作完成。

内部实现上,CountDownLatch 通过一个静态内部类 Sync 继承自 AbstractQueuedSynchronizer(AQS)。AQS 提供了一个框架,用于构建自定义的同步器。在 CountDownLatch 中,Sync 类通过重写 AQS 的钩子方法 tryReleaseShared() 和 tryAcquireShared() 来实现其同步机制。

  • tryReleaseShared() 方法用于在共享模式下尝试释放资源
  • tryAcquireShared() 方法用于在共享模式下尝试获取资源

我们可以发现,几乎所有基于AQS构造的同步类,实现原理都是差不多的,都是通过维护AQS中被volatile修饰的state变量作为竞态条件来实现线程同步。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/827229.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

代理设置方法 ubuntu git

目录 ubuntu设置代理方法 git 中 ubuntu设置代理方法 &#xff08;1&#xff09; .bashrc中写 或者 &#xff08;2&#xff09; 当自己的 虚拟机选择default switch&#xff0c;保持了虚拟机与本机的联通性&#xff08;host模式好像&#xff09;&#xff0c;这时&#xff0…

嵌入式学习——C语言基础——day6

1. 一维数组的定义 相同类型有限数据的一个集合 数据类型 数组名[元素个数]; 注意&#xff1a; 1. 数组中的元素必须为同一类型 2. 元素个数有限个 3. 数组定义时&#xff0c;元素个数必须为常量或者常量表达式&#xff0c;不能为变量 2. 数组元素的访问 数组名[元素下标] 元素…

阿里通义千问Qwen-7B-Chat大模型简介

阿里通义千问Qwen-7B-Chat是由阿里云研发的一系列大语言模型中的一个&#xff0c;属于通义千问大模型系列。这个模型具有70亿参数规模&#xff0c;是基于Transformer架构构建的&#xff0c;专门为理解和生成人类语言而设计。Qwen-7B-Chat在超大规模的预训练数据集上进行训练&am…

深度剖析图像处理—边缘检测

什么是边缘检测 边缘检测(Edge Detection)就是提取图像中的边缘点(Edge Point)。边缘点是与周围像素相比灰度值有阶跃变化或屋顶状变化的像素。边缘常存在于目标与背景之间、目标与目标之间、目标与其影子之间。 ​ 在图像处理和图像分析中&#xff0c;经常要用到边缘(Edge)、边…

【Git】生成patch和应用patch

生成patch 将本地所有修改打成补丁 git diff > /tmp/xxx.patch将本地对某个文件的修改打成补丁 git diff test/1.txt > /tmp/1.patch将某一次提交的修改内容打成补丁 -1表示只为单个提交创建patch&#xff0c;-o表示输出patch的文件夹路径&#xff0c;默认是用提交的…

D咖饮品机器人惊艳亮相:智能硬件改变生活习惯

在当今快节奏的生活中&#xff0c;人们对于便捷、高效的需求日益增长&#xff0c;智能硬件应运而生&#xff0c;其中饮品机器人作为一种新型的智能设备&#xff0c;正在以惊艳的姿态亮相于人们的生活中&#xff0c;为人们带来了全新的消费体验&#xff0c;改变着大众的生活习惯…

node-sass安装失败解决

老项目安装node-sass4.14.1一直失败 "node-sass": "^4.14.1",报错环境变量Path 中没有 python2.7 gyp verb check python checking for Python executable "python2.7" in the PATH安装python2.7,然后设置npm config set python C:\Python27 …

vulfocus的使用

vulfocus的使用 1.拉取镜像 docker pull vulfocus/vulfocus:latest 2.运行 docker run -d -p 80:80 -v /var/run/docker.sock:/var/run/docker.sock -e VUL_IP192.168.0.105 vulfocus/vulfocus 3.访问 用户名&#xff1a;admin 密码&#xff1a;admin

【机器学习】特征筛选实例与代码详解

机器学习中的特征筛选 一、特征筛选的重要性与基本概念二、特征筛选的方法与实践1. 基于统计的特征筛选2. 基于模型的特征筛选3. 嵌入式特征筛选 三、总结与展望 在机器学习领域&#xff0c;特征筛选作为预处理步骤&#xff0c;对于提高模型性能、简化模型结构以及增强模型解释…

街道社区信息宣传工作做的好这个投稿方法不能少

作为一名刚刚接手街道社区信息宣传工作的新人,伊始对于如何有效地向各大媒体平台投稿我可谓是一头雾水。那时的日子充满了曲折与挑战,每一步都似乎布满了荆棘。为了让更多居民了解社区的工作动态和服务亮点,我怀揣着满腔热情,着手撰写一篇篇生动详实的新闻稿件。然而,投稿的过程…

SpringAOP从入门到源码分析大全(三)ProxyFactory源码分析

文章目录 系列文档索引五、ProxyFactory源码分析1、案例2、认识TargetSource&#xff08;1&#xff09;何时用到TargetSource&#xff08;2&#xff09;Lazy的原理&#xff08;3&#xff09;应用TargetSource 3、ProxyFactory选择cglib或jdk动态代理原理4、jdk代理获取代理方法…

算法导论 总结索引 | 第三部分 第十一章:散列表

1、动态集合结构&#xff0c;它至少要支持 INSERT、SEARCH 和 DELETE字典操作 散列表 是实现字典操作的 一种有效的数据结构。尽管 最坏情况下&#xff0c;散列表中 查找一个元素的时间 与链表中 查找的时间相同&#xff0c;达到了 Θ(n)。在实际应用中&#xff0c;散列表的性…

【LeetCode热题100】【动态规划】分割等和子集

题目链接&#xff1a;416. 分割等和子集 - 力扣&#xff08;LeetCode&#xff09; 判断数组能否被分成两个和相等的子数组&#xff0c;先求数组的和sum&#xff0c;即变成能不能找到一个组合的和是sum/2&#xff0c;每个数最多只能被选择一次&#xff0c;即0-1背包问题 0-1背…

CB2-2CARD之Debian(Bookworm)安装Gnome看CCTV

CB2-2CARD之Debian&#xff08;Bookworm&#xff09;安装Gnome看CCTV 1. 源由2. 需求3. Debian系统桌面3.1 系统安装3.2 磁盘扩容3.3 系统更新3.4 Gnome安装 4. 测试4.1 CCTV网页测试4.2 系统空闲测试4.3 Firefox CPU占用率测试 5. 总结 1. 源由 近些年来&#xff0c;随着国内…

python Django中分配库存给用户包括定义库存模型、用户模型、以及一个用于分配库存的逻辑

在Django中分配库存给用户通常涉及几个步骤&#xff0c;包括定义库存模型、用户模型、以及一个用于分配库存的逻辑。以下是一个基本的示例来说明如何执行这个过程&#xff1a; 1. 定义模型 首先&#xff0c;你需要定义两个模型&#xff1a;一个是User模型&#xff08;可以使用…

【学习笔记】Vue3源码解析:第五部分 - 实现渲染(3)

课程地址&#xff1a;【已完结】全网最详细Vue3源码解析&#xff01;&#xff08;一行行带你手写Vue3源码&#xff09; 第五部分-&#xff1a;&#xff08;对应课程的第36 - 37节&#xff09; 第36节&#xff1a;《处理proxy&#xff0c;方便取值》 1、执行组件中的 render 方…

Golang 开发实战day11 - Pass By Value

&#x1f3c6;个人专栏 &#x1f93a; leetcode &#x1f9d7; Leetcode Prime &#x1f3c7; Golang20天教程 &#x1f6b4;‍♂️ Java问题收集园地 &#x1f334; 成长感悟 欢迎大家观看&#xff0c;不执着于追求顶峰&#xff0c;只享受探索过程 Golang 开发实战day11 - 按值…

C语言笔试题

想成为嵌入式程序员应知道的0x10个基本问题:预处理器&#xff08;Preprocessor&#xff09; 1 . 用预处理指令#define 声明一个常数&#xff0c;用以表明1年中有多少秒&#xff08;忽略闰年问题&#xff09; #define SECONDS_PER_YEAR (60 * 60 * 24 * 365)UL我在这想…

码随想录-算法训练营day20【二叉树06:最大二叉树、合并二叉树、二叉搜索树中的搜索、验证二叉搜索树】

代码随想录-035期-算法训练营【博客笔记汇总表】-CSDN博客 第六章 二叉树 part06 今日内容 ● 654.最大二叉树 ● 617.合并二叉树 ● 700.二叉搜索树中的搜索 ● 98.验证二叉搜索树 详细布置 654.最大二叉树 又是构造二叉树&#xff0c;昨天大家刚刚做完 中序后序确定二叉树…

详细解读DreamFusion

DreamFusion是Google推出的一项创新技术&#xff0c;旨在通过文本驱动的方式生成高质量的3D内容&#xff0c;这项技术对于游戏开发、元宇宙构建、3D设计等领域具有重要意义。以下是DreamFusion的关键特点和工作原理的详细解读&#xff1a; 工作原理 文本到图像生成模型&#…