分布式调度 Elastic-job

分布式调度 Elastic-job

1.概述

1.1什么是任务调度

我们可以思考一下下面业务场景的解决方案:

  • 某电商平台需要每天上午10点,下午3点,晚上8点发放一批优惠券
  • 某银行系统需要在信用卡到期还款日的前三天进行短信提醒
  • 某财务系统需要在每天凌晨0:10分结算前一天的财务数据,统计汇总

以上场景就是任务调度所需要解决的问题

任务调度是为了自动完成特定任务,在约定的特定时刻去执行任务的过程

我们在之前骡窝窝项目的学习中,使用过 Spring 中提供的定时任务注解 @Scheduled

在业务类中方法中贴上这个注解

 @Scheduled(cron = "0/20 * * * * ?")public void doWork(){//doSomething   }

然后在启动类上贴上@EnableScheduling注解

1.2 为什么需要分布式调度

感觉Spring给我们提供的这个注解可以完成任务调度的功能,好像已经完美解决问题了,为什么还需要分布式呢?

主要有如下这几点原因:

1.单机处理极限:原本1分钟内需要处理1万个订单,但是现在需要1分钟内处理10万个订单;原来一个统计需要1小时,现在业务方需要10分钟就统计出来。你也许会说,你也可以多线程、单机多进程处理。的确,多线程并行处理可以提高单位时间的处理效率,但是单机能力毕竟有限(主要是CPU、内存和磁盘),始终会有单机处理不过来的情况。

2.高可用:单机版的定式任务调度只能在一台机器上运行,如果程序或者系统出现异常就会导致功能不可用。虽然可以在单机程序实现的足够稳定,但始终有机会遇到非程序引起的故障,而这个对于一个系统的核心功能来说是不可接受的。

3.防止重复执行: 在单机模式下,定时任务是没什么问题的。但当我们部署了多台服务,同时又每台服务又有定时任务时,若不进行合理的控制在同一时间,只有一个定时任务启动执行,这时,定时执行的结果就可能存在混乱和错误了

这个时候就需要分布式的任务调度来实现了。

1.3 Elastic-Job 介绍

Elastic-Job 是一个分布式调度的解决方案,由当当网开源,它由两个相互独立的子项目 Elastic-job-Lite 和 Elastic-Job-Cloud 组成,使用Elastic-Job可以快速实现分布式任务调度。

Elastic-Job的地址: https://shardingsphere.apache.org/elasticjob/

功能列表:

  • 分布式调度协调

    在分布式环境中,任务能够按照指定的调度策略执行,并且能够避免同一任务多实例重复执行。

  • 丰富的调度策略:

    基于成熟的定时任务作业框架Quartz cron表达式执行定时任务。

  • 弹性拓容缩容

    当集群中增加一个实例,它应当能够被选举被执行任务;当集群减少一个实例时,他所执行的任务能被转移到别的示例中执行。

  • 失效转移

    某示例在任务执行失败后,会被转移到其他实例执行。

  • 错过执行任务重触发

    若因某种原因导致作业错过执行,自动记录错误执行的作业,并在下次次作业完成后自动触发。

  • 支持并行调度

    支持任务分片,任务分片是指将一个任务分成多个小任务在多个实例同时执行。

  • 作业分片一致性

    当任务被分片后,保证同一分片在分布式环境中仅一个执行实例。

  • 支持作业生命周期操作

    可以动态对任务进行开启及停止操作。

  • 丰富的作业类型

    支持Simple、DataFlow、Script三种作业类型

    在这里插入图片描述

系统架构图

在这里插入图片描述

2.Elastic-Job快速入门

2.1 环境搭建

2.1.1 版本要求

  • JDK 要求1.7以上保本
  • Maven 要求3.0.4及以上版本
  • Zookeeper 要求采取3.4.6以上版本

2.1.2 Zookeeper安装&运行

2.1.3 创建Maven项目

添加如下依赖

<dependency><groupId>com.dangdang</groupId><artifactId>elastic-job-lite-core</artifactId><version>2.1.5</version>
</dependency>

2.2 代码实现

2.2.1 任务类

public class MyElasticJob implements SimpleJob {public void execute(ShardingContext shardingContext) {System.out.println("定时任务开始====>"+new Date());}
}

2.2.2 配置类

public class JobDemo {public static void main(String[] args) {new JobScheduler(createRegistryCenter(), createJobConfiguration()).init();}private static CoordinatorRegistryCenter createRegistryCenter() {//配置zk地址,调度任务的组名ZookeeperConfiguration zookeeperConfiguration = new ZookeeperConfiguration("localhost:2181", "elastic-job-demo");zookeeperConfiguration.setSessionTimeoutMilliseconds(100);CoordinatorRegistryCenter regCenter = new ZookeeperRegistryCenter(zookeeperConfiguration);regCenter.init();return regCenter;}private static LiteJobConfiguration createJobConfiguration() {// 定义作业核心配置JobCoreConfiguration simpleCoreConfig = JobCoreConfiguration.newBuilder("demoSimpleJob","0/3 * * * * ?",1).build();// 定义SIMPLE类型配置SimpleJobConfiguration simpleJobConfig = new SimpleJobConfiguration(simpleCoreConfig, MyElasticJob.class.getCanonicalName());// 定义Lite作业根配置LiteJobConfiguration simpleJobRootConfig = LiteJobConfiguration.newBuilder(simpleJobConfig).build();return simpleJobRootConfig;}
}

2.2.3 测试

  • 运行单个程序,查看是否按照cron表达式的内容进行任务的调度
  • 运行多个程序,查看是否只会有一个实例进行任务调度
  • 运行多个程序后,把正在进行任务调度的进程关掉,查看其它进程是否能继续进行任务调度

3.SpringBoot集成Elastic-Job

3.1 添加Maven依赖

    <groupId>cn.wolfcode</groupId><artifactId>elastic-job-springboot</artifactId><version>1.0.0</version><parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-parent</artifactId><version>2.1.3.RELEASE</version></parent><properties><project.build.sourceEncoding>UTF-8</project.build.sourceEncoding><project.reporting.outputEncoding>UTF-8</project.reporting.outputEncoding><java.version>1.8</java.version></properties><dependencies><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency><dependency><groupId>com.dangdang</groupId><artifactId>elastic-job-lite-spring</artifactId><version>2.1.5</version></dependency><dependency><groupId>org.projectlombok</groupId><artifactId>lombok</artifactId></dependency></dependencies>

3.2 相关配置

因为配置中心的地址并不是固定的,所以我们应该把这个地址信息配置在配置文件中,所以在配置文件application.yml中添加配置如下:

elasticjob:zookeeper-url: localhost:2181group-name: elastic-job-group

zk注册中心配置类:

@Configuration
public class RegistryCenterConfig {@Bean(initMethod = "init")public CoordinatorRegistryCenter createRegistryCenter(@Value("${elasticjob.zookeeper-url}") String zookeeperUrl,@Value("${elasticjob.group-name}") String groupName) {//zk的配置ZookeeperConfiguration zookeeperConfiguration = new ZookeeperConfiguration(zookeeperUrl,groupName);//设置zk超时时间zookeeperConfiguration.setSessionTimeoutMilliseconds(100);//创建注册中心CoordinatorRegistryCenter zookeeperRegistryCenter = new ZookeeperRegistryCenter(zookeeperConfiguration);return zookeeperRegistryCenter;}
}

任务调度配置类

@Configuration
public class ElasticJobConfig {@Autowiredprivate MyElasticJob myElasticJob;@Autowiredprivate CoordinatorRegistryCenter registryCenter;private static LiteJobConfiguration createJobConfiguration(final Class<? extends SimpleJob> jobClass,final String cron,final int shardingTotalCount,final String shardingItemParameters) {// 定义作业核心配置JobCoreConfiguration.Builder jobCoreConfigurationBuilder = JobCoreConfiguration.newBuilder(jobClass.getSimpleName(), cron, shardingTotalCount);if(!StringUtils.isEmpty(shardingItemParameters)){jobCoreConfigurationBuilder.shardingItemParameters(shardingItemParameters);}// 定义SIMPLE类型配置SimpleJobConfiguration simpleJobConfig = new SimpleJobConfiguration(jobCoreConfigurationBuilder.build(), MyElasticJob.class.getCanonicalName());// 定义Lite作业根配置LiteJobConfiguration simpleJobRootConfig = LiteJobConfiguration.newBuilder(simpleJobConfig).overwrite(true).build();return simpleJobRootConfig;}@Bean(initMethod = "init")public SpringJobScheduler initSimpleElasticJob(){SpringJobScheduler springJobScheduler = new SpringJobScheduler(myElasticJob,registryCenter,createJobConfiguration(jobClass,"0/3 * * * * ?",1,null));return springJobScheduler;}
}

4.案例需求

需求:数据库中有一些列的数据,需要对这些数据进行备份操作,备份完之后,修改数据的状态,标记已经备份了。

4.1 初始化数据

在数据库中导入elastic-job-demo.sql数据

4.2 集成Druid&MyBatis

4.2.1 添加依赖

        <dependency><groupId>com.alibaba</groupId><artifactId>druid</artifactId><version>1.1.10</version></dependency><dependency><groupId>org.mybatis.spring.boot</groupId><artifactId>mybatis-spring-boot-starter</artifactId><version>1.2.0</version></dependency><!--mysql驱动--><dependency><groupId>mysql</groupId><artifactId>mysql-connector-java</artifactId></dependency>

4.2.2 添加配置

spring:datasource:url: jdbc:mysql://localhost:3306/elastic-job-demo?serverTimezone=GMT%2B8driverClassName: com.mysql.jdbc.Drivertype: com.alibaba.druid.pool.DruidDataSourceusername: rootpassword: admin

4.2.3 添加实体类

@Data
public class FileCustom {//唯一标识private Long id;//文件名private String name;//文件类型private String type;//文件内容private String content;//是否已备份private Boolean backedUp = false;public FileCustom(){}public FileCustom(Long id, String name, String type, String content){this.id = id;this.name = name;this.type = type;this.content = content;}
}

4.2.4 添加Mapper处理类

@Mapper
public interface FileCustomMapper {@Select("select * from t_file_custom where backedUp = 0")List<FileCustom> selectAll();@Update("update t_file_custom set backedUp = #{state} where id = #{id}")int changeState(@Param("id") Long id, @Param("state")int state);
}

4.3 业务功能实现

4.3.1 添加任务类

@Component
public class FileCustomElasticJob implements SimpleJob {@Autowiredprivate FileCustomMapper fileCustomMapper;@Overridepublic void execute(ShardingContext shardingContext) {doWork();}private void doWork(){List<FileCustom> fileList = fileCustomMapper.selectAll();System.out.println("需要备份文件个数:"+fileList.size());for(FileCustom fileCustom:fileList){backUpFile(fileCustom);}}private void backUpFile(FileCustom fileCustom){try {//模拟备份动作TimeUnit.SECONDS.sleep(1);} catch (InterruptedException e) {e.printStackTrace();}System.out.println("执行文件备份====>"+fileCustom);fileCustomMapper.changeState(fileCustom.getId(),1);}
}

4.3.2 添加任务调度配置

在配置类中新增这个Bean

@Bean(initMethod = "init")public SpringJobScheduler initFileCustomElasticJob(FileCustomElasticJob fileCustomElasticJob){SpringJobScheduler springJobScheduler = new SpringJobScheduler(fileCustomElasticJob,registryCenter,createJobConfiguration(FileCustomElasticJob.class,"0 0/1 * * * ?",1,null));return springJobScheduler;}

4.4 测试&问题

为了高可用,我们会对这个项目做集群的操作,可以保证其中一台挂了,另外一台可以继续工作.但是在集群的情况下,调度任务只在一台机器上运行,如果单个任务调度比较耗时,耗资源的情况下,对这台机器的消耗还是比较大的,

但是这个时候,其他机器却是空闲着的.如何合理的利用集群的其他机器且如何让任务执行得更快些呢?这时候Elastic-Job提供了任务调度分片的功能.

5.分片概念

​ 作业分片是指任务的分布式执行,需要将一个任务拆分为多个独立的任务项,然后由分布式的应用实例分别执行某一个或者几个分布项。

​ 例如:Elastic-Job快速入门中文件备份的案例,现有两台服务器,每台服务器分别跑一个应用实例。为了快速执行作业,那么可以讲任务分成4片,每个应用实例都执行两片。作业遍历数据逻辑应为:实例1查找text和image类型文件执行备份,实例2查找radio和vedio类型文件执行备份。如果由于服务器拓容应用实例数量增加为4,则作业遍历数据的逻辑应为: 4个实例分别处理text,image,radio,video类型的文件。

​ 可以看到,通过对任务的合理分片化,从而达到任务并行处理的效果.

分片项与业务处理解耦

​ Elastic-Job并不直接提供数据处理的功能,框架只会将分片项分配至各个运行中的作业服务器,开发者需要自行处理分片项与真实数据的对应关系

最大限度利用资源

将分片项设置大于服务器的数据,最好是大于服务器倍数的数量,作业将会合理利用分布式资源,动态的分配分片项.

​ 例如: 3台服务器,分成10片,则分片项结果为服务器A=0,1,2;服务器B=3,4,5;服务器C=6,7,8,9.如果 服务器C奔溃,则分片项分配结果为服务器A=0,1,2,3,4;服务器B=5,6,7,8,9.在不丢失分片项的情况下,最大限度利用现有的资源提高吞吐量.

6.案例改造成任务分片

6.1 配置类修改

在任务配置类中增加分片个数以及分片参数.

@Bean(initMethod = "init")public SpringJobScheduler initFileCustomElasticJob(FileCustomElasticJob fileCustomElasticJob){SpringJobScheduler springJobScheduler = new SpringJobScheduler(fileCustomElasticJob,registryCenter,createJobConfiguration(FileCustomElasticJob.class,"0 0/1 * * * ?",4,"0=text,1=image,2=radio,3=vedio"));return springJobScheduler;}

6.2 新增作业分片逻辑

@Component
public class FileCustomElasticJob implements SimpleJob {@Autowiredprivate FileCustomMapper fileCustomMapper;@Overridepublic void execute(ShardingContext shardingContext) {doWork(shardingContext.getShardingParameter());}private void doWork(String fileType){List<FileCustom> fileList = fileCustomMapper.selecByType(fileType);System.out.println("类型为:"+fileType+",文件,需要备份个数:"+fileList.size());for(FileCustom fileCustom:fileList){backUpFile(fileCustom);}}private void backUpFile(FileCustom fileCustom){try {//模拟备份动作TimeUnit.SECONDS.sleep(1);} catch (InterruptedException e) {e.printStackTrace();}System.out.println("执行文件备份====>"+fileCustom);fileCustomMapper.changeState(fileCustom.getId(),1);}
}

6.3 Mapper类修改

@Mapper
public interface FileCustomMapper {@Select("select * from t_file_custom where backedUp = 0")List<FileCustom> selectAll();@Select("select * from t_file_custom where backedUp = 0 and type=#{fileType}")List<FileCustom> selecByType(String fileType);@Update("update t_file_custom set backedUp = #{state} where id = #{id}")int changeState(@Param("id") Long id, @Param("state")int state);
}

6.4 测试

  • 只有一台机器的情况下,任务分片是如何执行的
  • 有多台机器的情况下,任务分片是如何执行的

7.Dataflow 类型调度任务

Dataflow 类型的定时任务需要实现 DataflowJob 接口,该接口提供2个方法供覆盖,分别用于抓取(fetchData)和处理(processData)数据,我们继续对例子进行改造。

Dataflow类型用于处理数据流,他和SimpleJob不同,它以数据流的方式执行,调用fetchData抓取数据,知道抓取不到数据才停止作业。

7.1 任务类

@Component
public class FileDataflowJob implements DataflowJob<FileCustom> {@Autowiredprivate FileCustomMapper fileCustomMapper;@Overridepublic List<FileCustom> fetchData(ShardingContext shardingContext) {List<FileCustom> fileCustoms = fileCustomMapper.fetchData(2);System.out.println("抓取时间:"+new Date()+",个数"+fileCustoms.size());return fileCustoms;}@Overridepublic void processData(ShardingContext shardingContext, List<FileCustom> data) {for(FileCustom fileCustom:data){backUpFile(fileCustom);}}private void backUpFile(FileCustom fileCustom){try {//模拟备份动作TimeUnit.SECONDS.sleep(1);} catch (InterruptedException e) {e.printStackTrace();}System.out.println("执行文件备份====>"+fileCustom);fileCustomMapper.changeState(fileCustom.getId(),1);}
}

7.2 配置类

@Configuration
public class ElasticJobConfig {@Autowiredprivate MyElasticJob myElasticJob;@Autowiredprivate CoordinatorRegistryCenter registryCenter;private static LiteJobConfiguration createJobConfiguration(final Class<? extends ElasticJob> jobClass,final String cron,final int shardingTotalCount,final String shardingItemParameters,boolean dataflowType) {// 定义作业核心配置JobCoreConfiguration.Builder jobCoreConfigurationBuilder = JobCoreConfiguration.newBuilder(jobClass.getSimpleName(), cron, shardingTotalCount);if(!StringUtils.isEmpty(shardingItemParameters)){jobCoreConfigurationBuilder.shardingItemParameters(shardingItemParameters);}JobTypeConfiguration jobConfig = null;if(dataflowType){jobConfig = new DataflowJobConfiguration(jobCoreConfigurationBuilder.build(),jobClass.getCanonicalName(),true);}else{// 定义SIMPLE类型配置jobConfig = new SimpleJobConfiguration(jobCoreConfigurationBuilder.build(), jobClass.getCanonicalName());}// 定义Lite作业根配置LiteJobConfiguration simpleJobRootConfig = LiteJobConfiguration.newBuilder(jobConfig).overwrite(true).build();return simpleJobRootConfig;}/*@Bean(initMethod = "init")public SpringJobScheduler initSimpleElasticJob(){SpringJobScheduler springJobScheduler = new SpringJobScheduler(myElasticJob,registryCenter,createJobConfiguration(MyElasticJob.class,"0/3 * * * * ?",1,null));return springJobScheduler;}*//*@Bean(initMethod = "init")public SpringJobScheduler initFileCustomElasticJob(FileCustomElasticJob fileCustomElasticJob){SpringJobScheduler springJobScheduler = new SpringJobScheduler(fileCustomElasticJob,registryCenter,createJobConfiguration(FileCustomElasticJob.class,"0 0/1 * * * ?",4,"0=text,1=image,2=radio,3=vedio",false));return springJobScheduler;}*/@Bean(initMethod = "init")public SpringJobScheduler iniDataflowElasticJob(FileDataflowJob fileDataflowJob){SpringJobScheduler springJobScheduler = new SpringJobScheduler(fileDataflowJob,registryCenter,createJobConfiguration(FileDataflowJob.class,"0 0/1 * * * ?",1,null,true));return springJobScheduler;}
}

7.3 测试

8.运维管理

8.1 事件追踪

Elastic-Job-Lite在配置中提供了JobEventConfiguration,支持数据库方式配置,会在数据库中自动创建JOB_EXECUTION_LOG和JOB_STATUS_TRACE_LOG两张表以及若干索引来近路作业的相关信息。

8.1.1 修改Elastic-Job配置类

在ElasticJobConfig配置类中注入DataSource

@Configuration
public class ElasticJobConfig {@Autowiredprivate DataSource dataSource;......
}

在任务配置中增加事件追踪配置

@Bean(initMethod = "init")public SpringJobScheduler initFileCustomElasticJob(FileCustomElasticJob fileCustomElasticJob){//增加任务事件追踪配置JobEventConfiguration jobEventConfiguration = new JobEventRdbConfiguration(dataSource);SpringJobScheduler springJobScheduler = new SpringJobScheduler(fileCustomElasticJob,registryCenter,createJobConfiguration(FileCustomElasticJob.class,"0 0/1 * * * ?",4,"0=text,1=image,2=radio,3=vedio",false),jobEventConfiguration);return springJobScheduler;}

8.1.2 日志信息表

启动后会发现在elastic-job-demo数据库中新增以下两张表

job_execution_log

在这里插入图片描述

记录每次作业的执行历史,分为两个步骤:

1.作业开始执行时间想数据库插入数据.

2.作业完成执行时向数据库更新数据,更新is_success,complete_time和failure_cause(如果任务执行失败)

job_status_trace_log

在这里插入图片描述

记录作业状态变更痕迹表,可通过每次作业运行的task_id查询作业状态变化的生命轨迹和运行轨迹.

8.2 运维控制台

elastic-job中提供了一个elastic-job-lite-console控制台

设计理念

1.本 控制台和Elastic-Job并无直接关系,是通过读取Elastic-Job的注册中心数据展示作业状态,或更新注册中心数据修改全局配置。

2.控制台只能控制任务本身是否运行,但不能控制作业进程的启停,因为控制台和作业本身服务器是完全分布式的,控制台并不能控制作业服务器。

主要功能:

1.查看作业以及服务器状态

2.快捷的修改以及删除作业配置

3.启用和禁用作业

4.跨注册中心查看作业

5.查看作业运行轨迹和运行状态

不支持项

1.添加作业,因为作业都是在首次运行时自动添加,使用控制台添加作业并无必要.直接在作业服务器启动包含Elasitc-Job的作业进程即可。

8.2.1 搭建步骤

  • 解压缩elastic-job-lite-console-2.1.5.tar

  • 进入bin目录,并执行:

    bin\start.bat
    
  • 打开浏览器访问http://localhost:8899

    用户名: root 密码: root,进入之后界面如下:

在这里插入图片描述

提供两种用户:管理员和访客,管理员拥有全部操作权限,访客仅拥有查看权限。默认管理员账号和面膜是root/root,访客用户名和密码是guest/guest,通过conf\auth.properties可以修改管理员以及访客用户名及密码

8.2.2 配置及使用

  • 配置注册中心地址

    先启动zookeeper然后再注册中心配置界面,点添加

在这里插入图片描述

点击提交后,然后点连接(zookeeper必须处于启动状态)

在这里插入图片描述

连接成功后,在作业纬度下可以显示该命名空间作业名称,分片数量及该作业的cron表达式等信息

在服务器纬度可以查看到服务器ip,当前运行的是实例数,作业总数等信息。

在这里插入图片描述

添加数据库连接之后可以查看任务的执行结果

在这里插入图片描述

然后在作业历史中就可以看到任务执行历史了。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/82503.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

04-Flask-新版Flask运行方式

新版Flask运行方式 前言老版本运行方式新版本运行方式命令行方式运行pycharm运行 前言 本篇来学习下新版Flask运行方式 老版本运行方式 app.run()&#xff1a;1.0之前版本 # -*- coding: utf-8 -*- # Time : 2023/9/16 # Author : 大海# 导入flask from flask import F…

SWC 流程

一个arxml 存储SWC &#xff08;可以存多个&#xff0c;也可以一个arxml存一个SWC&#xff09;一个arxml 存储 composition &#xff08;只能存一个&#xff09;一个arxml 存储 system description (通过import dbc自动生成system) 存储SWC和composition的arxml文件分开&#…

第2章_freeRTOS入门与工程实践之单片机程序设计模式

本教程基于韦东山百问网出的 DShanMCU-F103开发板 进行编写&#xff0c;需要的同学可以在这里获取&#xff1a; https://item.taobao.com/item.htm?id724601559592 配套资料获取&#xff1a;https://rtos.100ask.net/zh/freeRTOS/DShanMCU-F103 freeRTOS系列教程之freeRTOS入…

目标跟踪:Mobile Vision Transformer-based Visual Object Tracking

论文作者&#xff1a;Goutam Yelluru Gopal,Maria A. Amer 作者单位&#xff1a;Concordia University 论文链接&#xff1a;https://arxiv.org/pdf/2309.05829v1.pdf 项目链接&#xff1a;https://github.com/goutamyg/MVT 内容简介&#xff1a; 1&#xff09;方向&#…

基于HOG特征提取和GRNN神经网络的人脸表情识别算法matlab仿真,测试使用JAFFE表情数据库

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 1.HOG特征提取 2.GRNN神经网络 3.JAFFE表情数据库 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 .....................................…

Vue3 菜鸟入门(二)超详细:基本框架 模板语法和指令

【学习笔记】Vue3 菜鸟入门&#xff08;二&#xff09;超详细&#xff1a;基本框架 模板语法和指令 关键词&#xff1a;Vue 、Vue 3、Java、Spring Boot、Idea、数据库、一对一、培训、教学本文主要内容含Vue 基本框架 模板语法、指令计划1小时完成&#xff0c;请同学尽量提前…

nginx入门

概述/简介 Nginx 是一款轻量级的 Web 服务器/反向代理服务器及电子邮件代理服务器&#xff0c;在 BSD-like 协议下发行,具有高性能、高可靠性、丰富的模块化支持和简单易用的优势。 应用场景 动静分离: 为了加快网站的解析速度&#xff0c;我们可以把动态页面和静态页面分散到…

cutree 算法

传播 ​ 由于块与块之间具有参考关系&#xff0c;提升被参考块的质量&#xff0c;可以改善后续参考块的质量 ​ Pn1帧中CU0,1完全参考Pn的CU1,1。且Pn1帧中CU0,1块帧内预测和帧间预测的代价分别为 c x , y n 1 ( 0 , 0 ) c_{x,y}^{n1}(0,0) cx,yn1​(0,0)和 c x , y n 1 ( d…

2023Node.js零基础教程(小白友好型),nodejs新手到高手,(一)NodeJS入门

写在开始前 在无尽的代码汪洪中&#xff0c;闪耀着一抹绚丽的光芒。它叫做Web前端开发&#xff01; HTML是我们的魔法笔&#xff0c;是创造力的源泉。它将我们的思绪化为标签&#xff0c;将我们的想象变为元素。 在无尽的标签组合中&#xff0c;我们创造出独特的网页&#xff…

Webserver项目解析

一.webserver的组成部分 Buffer类 用于存储需要读写的数据 Channel类 存储文件描述符和相应的事件&#xff0c;当发生事件时&#xff0c;调用对应的回调函数 ChannelMap类 Channel数组&#xff0c;用于保存一系列的Channel Dispatcher 监听器&#xff0c;可以设置为epo…

【张兔兔送书第一期:考研必备书单】

考研书单必备 《数据结构与算法分析》《计算机网络&#xff1a;自顶向下方法》《现代操作系统》《深入理解计算机系统》《概率论基础教程&#xff08;原书第10版》《线性代数&#xff08;原书第10版&#xff09;》《线性代数及其应用》赠书活动 八九月的朋友圈刮起了一股晒通知…

【架构篇】Supabase架构和功能介绍

Supabase是什么 Supabase将自己定位为Firebase的开源替代品&#xff0c;提供了一套工具来帮助开发者构建web或移动应用程序。Supabase是建立在Postgres之上的&#xff0c;Postgres是一个免费的开源数据库&#xff0c;被认为是世界上最稳定、最先进的数据库之一。Supabase对标F…

《Envoy 代理:云原生时代的流量管理》

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f405;&#x1f43e;猫头虎建议程序员必备技术栈一览表&#x1f4d6;&#xff1a; &#x1f6e0;️ 全栈技术 Full Stack: &#x1f4da…

C# Onnx Yolov8 Detect Poker 扑克牌识别

效果 效果一般&#xff0c;可下载数据集自己训练 Demo下载 数据集下载

SaaS架构C/S检验科LIS系统源码: 检验申请、标本编号、联机采集

适用于医院检验科实际需要的LIS管理系统, 实现检验业务全流程的计算机管理。从检验申请、标本编号、联机采集、中文报告单的生成与打印、质控图的绘制和数据的检索与备份。通过将所有仪器自身提供的端口与科室LIS系统中的工作站点连接,实现与医院HIS系统的对接。 通过门诊医生和…

docker-compose使用

docker-compose docker的项目编排 一、安装docker-compose Rocky Linux Rocky Linux安装Docker Compose的步骤如下&#xff1a; 安装Docker。您可以使用以下命令安装Docker&#xff1a; sudo dnf install docker-ce docker-ce-cli containerd.io安装Docker Compose。您可以…

java项目之抗疫医疗用品销售平台ssm+jsp

风定落花生&#xff0c;歌声逐流水&#xff0c;大家好我是风歌&#xff0c;混迹在java圈的辛苦码农。今天要和大家聊的是一款基于ssm的抗疫医疗用品销售平台。技术交流和部署相关看文章末尾&#xff01; 开发环境&#xff1a; 后端&#xff1a; 开发语言&#xff1a;Java 框…

今天的消费情况

1、今天消费1710元 意外险 住院--集中参保 校---******----服 1220 rmB lunch 240Rmb

腾讯mini项目-【指标监控服务重构】2023-07-30

今日已办 调研 CPU & Memory Cadivisor &#xff23;adivisor -> Prometheus -> (Grafana / SigNoz Web) google/cadvisor: Analyzes resource usage and performance characteristics of running containers. (github.com) services:cadvisor:image: gcr.io/ca…

linux 磁盘命令之du和df命令

du相关的命令: du -ah 显示所有目录或文件所占空间 du -KG 显示所有目录或文件所占空间 块大小K为单位 du -BM 显示所有目录或文件所占空间 块大小M为单位 du -BG 显示所有目录或文件所占空间 块大小G为单位du -sh [目录名] 返回该目录的大小 du -sm [文件夹] 返回该文…