第2章_freeRTOS入门与工程实践之单片机程序设计模式

本教程基于韦东山百问网出的 DShanMCU-F103开发板 进行编写,需要的同学可以在这里获取: https://item.taobao.com/item.htm?id=724601559592

配套资料获取:https://rtos.100ask.net/zh/freeRTOS/DShanMCU-F103

freeRTOS系列教程之freeRTOS入门与工程实践章节汇总: https://blog.csdn.net/qq_35181236/article/details/132842016


第2章 单片机程序设计模式

本章目标

  • 理解裸机程序设计模式
  • 了解多任务系统中程序设计的不同

2.1 裸机程序设计模式

裸机程序的设计模式可以分为:轮询、前后台、定时器驱动、基于状态机。前面三种方法都无法解决一个问题:假设有A、B两个都很耗时的函数,无法降低它们相互之间的影响。第4种方法可以解决这个问题,但是实践起来有难度。

假设一位职场妈妈需要同时解决2个问题:给小孩喂饭、回复工作信息,场景如图所示,后面将会演示各类模式下如何写程序:

2.1.1 轮询模式

示例代码如下:

// 经典单片机程序: 轮询
void main()
{while (1){喂一口饭();回一个信息();}
}

在main函数中是一个while循环,里面依次调用2个函数,这两个函数相互之间有影响:如果“喂一口饭”太花时间,就会导致迟迟无法“回一个信息”;如果“回一个信息”太花时间,就会导致迟迟无法“喂下一口饭”。

使用轮询模式编写程序看起来很简单,但是要求while循环里调用到的函数要执行得非常快,在复杂场景里反而增加了编程难度。

2.1.1 前后台

所谓“前后台”就是使用中断程序。假设收到同事发来的信息时,电脑会发出“滴”的一声,这时候妈妈才需要去回复信息。示例程序如下:

// 前后台程序
void main()
{while (1){// 后台程序喂一口饭();}
}// 前台程序
void 滴_中断()
{回一个信息();
}
  • main函数里while循环里的代码是后台程序,平时都是while循环在运行;
  • 当同事发来信息,电脑发出“滴”的一声,触发了中断。妈妈暂停喂饭,去执行“滴_中断”给同事回复信息;

在这个场景里,给同事回复信息非常及时:即使正在喂饭也会暂停下来去回复信息。“喂一口饭”无法影响到“回一个信息”。但是,如果“回一个信息”太花时间,就会导致 “喂一口饭”迟迟无法执行。

继续改进,假设小孩吞下饭菜后会发出“啊”的一声,妈妈听到后才会喂下一口饭。喂饭、回复信息都是使用中断函数来处理。示例程序如下:

// 前后台程序
void main()
{while (1){// 后台程序}
}// 前台程序
void 滴_中断()
{回一个信息();
}// 前台程序
void 啊_中断()
{喂一口饭();
}

main函数中的while循环是空的,程序的运行靠中断来驱使。如果电脑声音“滴”、小孩声音“啊”不会同时、相近发出,那么“回一个信息”、“喂一口饭”相互之间没有影响。在不能满足这个前提的情况下,比如“滴”、“啊”同时响起,先“回一个信息”时就会耽误“喂一口饭”,这种场景下程序遭遇到了轮询模式的缺点:函数相互之间有影响。

2.1.2 定时器驱动

定时器驱动模式,是前后台模式的一种,可以按照不用的频率执行各种函数。比如需要每2分钟给小孩喂一口饭,需要每5分钟给同事回复信息。那么就可以启动一个定时器,让它每1分钟产生一次中断,让中断函数在合适的时间调用对应函数。示例代码如下:

// 前后台程序: 定时器驱动
void main()
{while (1){// 后台程序}
}// 前台程序: 每1分钟触发一次中断
void 定时器_中断()
{static int cnt = 0;cnt++;if (cnt % 2 == 0){喂一口饭();}else if (cnt % 5 == 0){回一个信息();}
}
  • main函数中的while循环是空的,程序的运行靠定时器中断来驱使。
  • 定时器中断每1分钟发生一次,在中断函数里让cnt变量累加(代码第14行)。
  • 第15行:进行求模运算,如果对2取模为0,就“喂一口饭”。这相当于每发生2次中断就“喂一口饭”。
  • 第19行:进行求模运算,如果对5取模为0,就“回一个信息”。这相当于每发生5次中断就“回一个信息”。

这种模式适合调用周期性的函数,并且每一个函数执行的时间不能超过一个定时器周期。如果“喂一口饭”很花时间,比如长达10分钟,那么就会耽误“回一个信息”;反过来也是一样的,如果“回一个信息”很花时间也会影响到“喂一口饭”;这种场景下程序遭遇到了轮询模式的缺点:函数相互之间有影响。

2.1.3 基于状态机

当“喂一口饭”、“回一个信息”都需要花很长的时间,无论使用前面的哪种设计模式,都会退化到轮询模式的缺点:函数相互之间有影响。可以使用状态机来解决这个缺点,示例代码如下:

// 状态机
void main()
{while (1){喂一口饭();回一个信息();}
}

在main函数里,还是使用轮询模式依次调用2个函数。

关键在于这2个函数的内部实现:使用状态机,每次只执行一个状态的代码,减少每次执行的时间,代码如下:

void 喂一口饭(void)
{static int state = 0;switch (state){case 0:{/* 舀饭 *//* 进入下一个状态 */state++;break;}case 1:{/* 喂饭 *//* 进入下一个状态 */state++;break;}case 2:{/* 舀菜 *//* 进入下一个状态 */state++;break;}case 3:{/* 喂菜 *//* 恢复到初始状态 */state = 0;break;}}
}void 回一个信息(void)
{static int state = 0;switch (state){case 0:{/* 查看信息 *//* 进入下一个状态 */state++;break;}case 1:{/* 打字 *//* 进入下一个状态 */state++;break;}case 2:{/* 发送 *//* 恢复到初始状态 */state = 0;break;}}
}

以“喂一口饭”为例,函数内部拆分为4个状态:舀饭、喂饭、舀菜、喂菜。每次执行“喂一口饭”函数时,都只会执行其中的某一状态对应的代码。以前执行一次“喂一口饭”函数可能需要4秒钟,现在可能只需要1秒钟,就降低了对后面“回一个信息”的影响。

同样的,“回一个信息”函数内部也被拆分为3个状态:查看信息、打字、发送。每次执行这个函数时,都只是执行其中一小部分代码,降低了对“喂一口饭”的影响。

使用状态机模式,可以解决裸机程序的难题:假设有A、B两个都很耗时的函数,怎样降低它们相互之间的影响。但是很多场景里,函数A、B并不容易拆分为多个状态,并且这些状态执行的时间并不好控制。所以这并不是最优的解决方法,需要使用多任务系统。

2.2 多任务系统

2.2.1 多任务模式

对于裸机程序,无论使用哪种模式进行精心的设计,在最差的情况下都无法解决这个问题:假设有A、B两个都很耗时的函数,无法降低它们相互之间的影响。使用状态机模式时,如果函数拆分得不好,也会导致这个问题。本质原因是:函数是轮流执行的。假设“喂一口饭”需要t1t5这5段时间,“回一个信息需要”tate这5段时间,轮流执行时:先执行完t1t5,再执行tate,如下图所示:

对于职场妈妈,她怎么解决这个问题呢?她是一个眼明手快的人,可以一心多用,她这样做:

  • 左手拿勺子,给小孩喂饭
  • 右手敲键盘,回复同事
  • 两不耽误,小孩“以为”妈妈在专心喂饭,同事“以为”她在专心聊天
  • 但是脑子只有一个啊,虽然说“一心多用”,但是谁能同时思考两件事?
  • 只是她反应快,上一秒钟在考虑夹哪个菜给小孩,下一秒钟考虑给同事回复什么信息
  • 本质是:交叉执行,t1t5和tate交叉执行,如下图所示:

基于多任务系统编写程序时,示例代码如下:

// RTOS程序
喂饭任务()
{while (1){喂一口饭();}
}回信息任务()
{while (1){回一个信息();}
}void main()
{// 创建2个任务create_task(喂饭任务);create_task(回信息任务);// 启动调度器start_scheduler();
}
  • 第21、22行,创建2个任务;
  • 第25行,启动调度器;
  • 之后,这2个任务就会交叉执行了;

基于多任务系统编写程序时,反而更简单了:

  1. 上面第2~8行是“喂饭任务”的代码;
  2. 第10~16行是“回信息任务”的代码,编写它们时甚至都不需要考虑它和其他函数的相互影响。就好像有2个单板:一个只运行“喂饭任务”这个函数、另一个只运行“回信息任务”这个函数。

多任务系统会依次给这些任务分配时间:你执行一会,我执行一会,如此循环。只要切换的间隔足够短,用户会“感觉这些任务在同时运行”。如下图所示:

2.2.2 互斥操作

多任务系统中,多个任务可能会“同时”访问某些资源,需要增加保护措施以防止混乱。比如任务A、B都要使用串口,能否使用一个全局变量让它们独占地、互斥地使用串口?示例代码如下:

// RTOS程序
int g_canuse = 1;void uart_print(char *str)
{if (g_canuse){g_canuse = 0;printf(str);g_canuse = 1;}
}task_A()
{while (1){uart_print("0123456789\n");}
}task_B()
{while (1){uart_print("abcdefghij");}
}void main()
{// 创建2个任务create_task(task_A);create_task(task_B);// 启动调度器start_scheduler();
}

程序的意图是:task_A打印“0123456789”,task_B打印“abcdefghij”。在task_A或task_B打印的过程中,另一个任务不能打印,以避免数字、字母混杂在一起,比如避免打印这样的字符:“012abc”。

第6行使用全局变量g_canuse实现互斥打印,它等于1时表示“可以打印”。在进行实际打印之前,先把g_canuse设置为0,目的是防止别的任务也来打印。

这个程序大部分时间是没问题的,但是只要它运行的时间足够长,就会出现数字、字母混杂的情况。下图把uart_print函数标记为①~④个步骤:

void uart_print(char *str)
{if( g_canuse ){g_canuse = 0;printf(str);   ③g_canuse = 1;}
}

如果task_A执行完①,进入if语句里面执行②之前被切换为task_B:在这一瞬间,g_canuse还是1。

task_B执行①时也会成功进入if语句,假设它执行到③,在printf打印完部分字符比如“abc”后又再次被切换为task_A。

task_A继续从上次被暂停的地方继续执行,即从②那里继续执行,成功打印出“0123456789”。这时在串口上可以看到打印的结果为:“abc0123456789”。

是不是“①判断”、“②清零”间隔太远了,uart_print函数改进成如下的代码呢?

void uart_print(char *str)
{g_canuse--;            ① 减一if( g_canuse == 0 )    ② 判断{printf(str);     ③ 打印}g_canuse++;          ④ 加一
}

即使改进为上述代码,仍然可能产生两个任务同时使用串口的情况。因为“①减一”这个操作会分为3个步骤:a.从内存读取变量的值放入寄存器里,b.修改寄存器的值让它减一,c.把寄存器的值写到内存上的变量上去。

如果task_A执行完步骤a、b,还没来得及把新值写到内存的变量里,就被切换为task_B:在这一瞬间,g_canuse还是1。

task_B执行①②时也会成功进入if语句,假设它执行到③,在printf打印完部分字符比如“abc”后又再次被切换为task_A。

task_A继续从上次被暂停的地方继续执行,即从步骤c那里继续执行,成功打印出“0123456789”。这时在串口上可以看到打印的结果为:“abc0123456789”。

从上面的例子可以看到,基于多任务系统编写程序时,访问公用的资源的时候要考虑“互斥操作”。任何一种多任务系统都会提供相应的函数。

2.2.3 同步操作

如果任务之间有依赖关系,比如任务A执行了某个操作之后,需要任务B进行后续的处理。如果代码如下编写的话,任务B大部分时间做的都是无用功。

// RTOS程序
int flag = 0;void task_A()
{while (1){// 做某些复杂的事情// 完成后把flag设置为1flag = 1;}
}void task_B()
{while (1){if (flag){// 做后续的操作}}
}void main()
{// 创建2个任务create_task(task_A);create_task(task_B);// 启动调度器start_scheduler();
}

上述代码中,在任务A没有设置flag为1之前,任务B的代码都只是去判断flag。而任务A、B的函数是依次轮流运行的,假设系统运行了100秒,其中任务A总共运行了50秒,任务B总共运行了50秒,任务A在努力处理复杂的运算,任务B仅仅是浪费CPU资源。

如果可以让任务B阻塞,即让任务B不参与调度,那么任务A就可以独占CPU资源加快处理复杂的事情。当任务A处理完事情后,再唤醒任务B。示例代码如下:

// RTOS程序
void task_A()
{while (1){// 做某些复杂的事情// 释放信号量,会唤醒任务B;}
}void task_B()
{while (1){// 等待信号量, 会让任务B阻塞// 做后续的操作}
}void main()
{// 创建2个任务create_task(task_A);create_task(task_B);// 启动调度器start_scheduler();
}
  • 第15行:任务B运行时,等待信号量,不成功时就会阻塞,不在参与任务调度。
  • 第7行:任务A处理完复杂的事情后,释放信号量会唤醒任务B。
  • 第16行:任务B被唤醒后,从这里继续运行。

在这个过程中,任务A处理复杂事情的时候可以独占CPU资源,加快处理速度。


本章完

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/82499.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

目标跟踪:Mobile Vision Transformer-based Visual Object Tracking

论文作者:Goutam Yelluru Gopal,Maria A. Amer 作者单位:Concordia University 论文链接:https://arxiv.org/pdf/2309.05829v1.pdf 项目链接:https://github.com/goutamyg/MVT 内容简介: 1)方向&#…

基于HOG特征提取和GRNN神经网络的人脸表情识别算法matlab仿真,测试使用JAFFE表情数据库

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 1.HOG特征提取 2.GRNN神经网络 3.JAFFE表情数据库 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 .....................................…

Vue3 菜鸟入门(二)超详细:基本框架 模板语法和指令

【学习笔记】Vue3 菜鸟入门(二)超详细:基本框架 模板语法和指令 关键词:Vue 、Vue 3、Java、Spring Boot、Idea、数据库、一对一、培训、教学本文主要内容含Vue 基本框架 模板语法、指令计划1小时完成,请同学尽量提前…

nginx入门

概述/简介 Nginx 是一款轻量级的 Web 服务器/反向代理服务器及电子邮件代理服务器,在 BSD-like 协议下发行,具有高性能、高可靠性、丰富的模块化支持和简单易用的优势。 应用场景 动静分离: 为了加快网站的解析速度,我们可以把动态页面和静态页面分散到…

cutree 算法

传播 ​ 由于块与块之间具有参考关系,提升被参考块的质量,可以改善后续参考块的质量 ​ Pn1帧中CU0,1完全参考Pn的CU1,1。且Pn1帧中CU0,1块帧内预测和帧间预测的代价分别为 c x , y n 1 ( 0 , 0 ) c_{x,y}^{n1}(0,0) cx,yn1​(0,0)和 c x , y n 1 ( d…

2023Node.js零基础教程(小白友好型),nodejs新手到高手,(一)NodeJS入门

写在开始前 在无尽的代码汪洪中,闪耀着一抹绚丽的光芒。它叫做Web前端开发! HTML是我们的魔法笔,是创造力的源泉。它将我们的思绪化为标签,将我们的想象变为元素。 在无尽的标签组合中,我们创造出独特的网页&#xff…

Webserver项目解析

一.webserver的组成部分 Buffer类 用于存储需要读写的数据 Channel类 存储文件描述符和相应的事件,当发生事件时,调用对应的回调函数 ChannelMap类 Channel数组,用于保存一系列的Channel Dispatcher 监听器,可以设置为epo…

【张兔兔送书第一期:考研必备书单】

考研书单必备 《数据结构与算法分析》《计算机网络:自顶向下方法》《现代操作系统》《深入理解计算机系统》《概率论基础教程(原书第10版》《线性代数(原书第10版)》《线性代数及其应用》赠书活动 八九月的朋友圈刮起了一股晒通知…

【架构篇】Supabase架构和功能介绍

Supabase是什么 Supabase将自己定位为Firebase的开源替代品,提供了一套工具来帮助开发者构建web或移动应用程序。Supabase是建立在Postgres之上的,Postgres是一个免费的开源数据库,被认为是世界上最稳定、最先进的数据库之一。Supabase对标F…

《Envoy 代理:云原生时代的流量管理》

🌷🍁 博主猫头虎(🐅🐾)带您 Go to New World✨🍁 🐅🐾猫头虎建议程序员必备技术栈一览表📖: 🛠️ 全栈技术 Full Stack: &#x1f4da…

C# Onnx Yolov8 Detect Poker 扑克牌识别

效果 效果一般,可下载数据集自己训练 Demo下载 数据集下载

SaaS架构C/S检验科LIS系统源码: 检验申请、标本编号、联机采集

适用于医院检验科实际需要的LIS管理系统, 实现检验业务全流程的计算机管理。从检验申请、标本编号、联机采集、中文报告单的生成与打印、质控图的绘制和数据的检索与备份。通过将所有仪器自身提供的端口与科室LIS系统中的工作站点连接,实现与医院HIS系统的对接。 通过门诊医生和…

docker-compose使用

docker-compose docker的项目编排 一、安装docker-compose Rocky Linux Rocky Linux安装Docker Compose的步骤如下: 安装Docker。您可以使用以下命令安装Docker: sudo dnf install docker-ce docker-ce-cli containerd.io安装Docker Compose。您可以…

java项目之抗疫医疗用品销售平台ssm+jsp

风定落花生,歌声逐流水,大家好我是风歌,混迹在java圈的辛苦码农。今天要和大家聊的是一款基于ssm的抗疫医疗用品销售平台。技术交流和部署相关看文章末尾! 开发环境: 后端: 开发语言:Java 框…

今天的消费情况

1、今天消费1710元 意外险 住院--集中参保 校---******----服 1220 rmB lunch 240Rmb

腾讯mini项目-【指标监控服务重构】2023-07-30

今日已办 调研 CPU & Memory Cadivisor Cadivisor -> Prometheus -> (Grafana / SigNoz Web) google/cadvisor: Analyzes resource usage and performance characteristics of running containers. (github.com) services:cadvisor:image: gcr.io/ca…

linux 磁盘命令之du和df命令

du相关的命令: du -ah 显示所有目录或文件所占空间 du -KG 显示所有目录或文件所占空间 块大小K为单位 du -BM 显示所有目录或文件所占空间 块大小M为单位 du -BG 显示所有目录或文件所占空间 块大小G为单位du -sh [目录名] 返回该目录的大小 du -sm [文件夹] 返回该文…

短信、邮箱验证码本地可以,部署到服务器接口却不能使用

应对公司双验证要求,对本系统做邮箱、短信验证码登录,本地开发正常发送,到服务器上部署却使用失败,已全部解决,记录坑。 一、nginx拦截 先打开你的服务器 nginx.conf 看看有没有做接口拦截。(本地可能做Sp…

爬虫逆向实战(32)-某号店登录(RSA、补环境、混淆)

一、数据接口分析 主页地址:某号店 1、抓包 通过抓包可以发现登录接口是/publicPassport/login.do 2、判断是否有加密参数 请求参数是否加密? 通过查看“载荷”模块可以发现,有三个加密参数:username、password、captchaTok…

70、Spring Data JPA 的 自定义查询(全手动,自己写完整 SQL 语句)

1、方法名关键字查询(全自动,既不需要提供sql语句,也不需要提供方法体) 2、Query查询(半自动:提供 SQL 或 JPQL 查询) 3、自定义查询(全手动) ★ 自定义查询&#xff08…