kafka安装配置及使用

kafka安装配置及使用


kafka概述

Kafka 是一个分布式流处理平台和消息队列系统,最初由 LinkedIn 公司开发并开源。它设计用于处理大规模的实时数据流,并具有高可扩展性、高吞吐量和持久性等特性。以下是 Kafka 的一些主要特点和用途:

  • 分布式架构:Kafka 是一个分布式系统,可以运行在多个服务器上组成的集群中。这个集群可以被扩展到数百台服务器上,以处理大量的数据和客户端。

  • 发布-订阅模型:Kafka 使用发布-订阅模型来处理消息。消息生产者将消息发布到一个或多个主题(Topics)中,而消息消费者则通过订阅这些主题来接收消息。这种模型使得消息的发布者和订阅者之间解耦,从而支持灵活的消息处理流程。

  • 持久性:Kafka 将消息持久化到磁盘中,以保证消息的持久性和可靠性。即使消息被消费者消费后,它们仍然会被保留在 Kafka 中,直到达到了消息的过期时间或者被手动删除。

  • 高吞吐量:Kafka 能够处理非常高的吞吐量,每个节点可以支持成千上万的消息的读写操作。这使得 Kafka 成为处理大规模实时数据的理想选择。

  • 水平扩展:Kafka 的分布式架构和分区机制使得它能够轻松地进行水平扩展,以应对不断增长的数据流量。

  • 流式处理:除了作为消息队列系统外,Kafka 还提供了流式处理功能。它可以与流处理框架(如 Apache Storm、Apache Flink、Spark Streaming 等)集成,支持实时数据处理和分析。

  • 可靠性:Kafka 提供了多种副本机制和容错机制,以确保数据的可靠性和高可用性。它支持副本数据的备份和同步复制,以及分布式的容错机制。

Kafka 在现代大数据和实时数据处理场景中被广泛应用,包括日志收集、事件驱动架构、实时分析、指标监控等领域。由于其高可靠性、高性能和可扩展性,Kafka 已经成为许多大型互联网公司和企业的核心基础设施之一。


安装步骤

1.0Docker安装zookeeper

Kafka对于zookeeper是强依赖,保存kafka相关的节点数据,所以安装Kafka之前必须先安装zookeeper
代码如下:注意zookeeper和kafka版本号是对应的不能乱改

 docker pull zookeeper:3.4.14

1.1创建zookeeper 容器

代码如下:

 docker run -d --name zookeeper -p 2181:2181 zookeeper:3.4.14

1.2Docker安装kafka

代码如下:

docker pull wurstmeister/kafka:2.12-2.3.1

1.3创建kafka 容器

代码如下:

docker run -d --name kafka \
--env KAFKA_ADVERTISED_HOST_NAME=192.168.100.130 \
--env KAFKA_ZOOKEEPER_CONNECT=192.168.100.130:2181 \
--env KAFKA_ADVERTISED_LISTENERS=PLAINTEXT://192.168.100.130:9092 \
--env KAFKA_LISTENERS=PLAINTEXT://0.0.0.0:9092 \
--env KAFKA_HEAP_OPTS="-Xmx256M -Xms256M" \
--net=host wurstmeister/kafka:2.12-2.3.1

kafka入门使用

2.0导入依赖

代码如下:创建kafka-demo项目

<dependency><groupId>org.apache.kafka</groupId><artifactId>kafka-clients</artifactId>
</dependency>

2.1生产者发送消息

代码如下:生产者发送消息

import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;import java.util.Properties;/*** 生产者*/
public class ProducerQuickStart {public static void main(String[] args) {//1.kafka的配置信息Properties properties = new Properties();//kafka的连接地址properties.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG,"192.168.100.130:9092");//发送失败,失败的重试次数properties.put(ProducerConfig.RETRIES_CONFIG,5);//消息key的序列化器properties.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer");//消息value的序列化器properties.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG,"org.apache.kafka.common.serialization.StringSerializer");//2.创建生产者对象KafkaProducer<String,String> producer = new KafkaProducer<String, String>(properties);//封装发送的消息ProducerRecord<String,String> record = new ProducerRecord<String, String>("eoffice-topic","100001","hello kafka");//3.发送消息producer.send(record);//4.关闭消息通道,必须关闭,否则消息发送不成功producer.close();}}

2.2消费者接收消息

代码如下:

import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;import java.time.Duration;
import java.util.Collections;
import java.util.Properties;/*** 消费者*/
public class ConsumerQuickStart {public static void main(String[] args) {//1.添加kafka的配置信息Properties properties = new Properties();//kafka的连接地址properties.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.100.130:9092");//消费者组properties.put(ConsumerConfig.GROUP_ID_CONFIG, "group2");//key和value消息的反序列化器消息的反序列化器properties.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");properties.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringDeserializer");//2.创建消费者对象KafkaConsumer<String, String> consumer = new KafkaConsumer<String, String>(properties);//3.订阅主题consumer.subscribe(Collections.singletonList("eoffice-topic"));//当前线程一直处于监听状态while (true) {//4.获取消息ConsumerRecords<String, String> consumerRecords = consumer.poll(Duration.ofMillis(1000));for (ConsumerRecord<String, String> consumerRecord : consumerRecords) {System.out.println(consumerRecord.key());System.out.println(consumerRecord.value());}}}}

kafka高可用设计

3.0集群

在这里插入图片描述

  • Kafka 的服务器端由被称为 Broker 的服务进程构成,即一个 Kafka 集群由多个 Broker 组成

  • 这样如果集群中某一台机器宕机,其他机器上的 Broker 也依然能够对外提供服务。这其实就是 Kafka 提供高可用的手段之一


3.1备份机制(Replication)

在这里插入图片描述

Kafka 中消息的备份又叫做 副本(Replica)

Kafka 定义了两类副本:

  • 领导者副本(Leader Replica)

  • 追随者副本(Follower Replica)

3.1.1同步方式

在这里插入图片描述

ISR(in-sync replica)需要同步复制保存的follower
如果leader失效后,需要选出新的leader,选举的原则如下:

第一:选举时优先从ISR中选定,因为这个列表中follower的数据是与leader同步的
第二:如果ISR列表中的follower都不行了,就只能从其他follower中选取

极端情况,就是所有副本都失效了,这时有两种方案

第一:等待ISR中的一个活过来,选为Leader,数据可靠,但活过来的时间不确定
第二:选择第一个活过来的Replication,不一定是ISR中的,选为leader,以最快速度恢复可用性,但数据不一定完整


kafka生产者详解

4.0.步骤

  • 同步发送

使用send()方法发送,它会返回一个Future对象,调用get()方法进行等待,就可以知道消息是否发送成功

RecordMetadata recordMetadata = producer.send(kvProducerRecord).get();
System.out.println(recordMetadata.offset());
  • 异步发送

调用send()方法,并指定一个回调函数,服务器在返回响应时调用函数

//异步消息发送
producer.send(kvProducerRecord, new Callback() {@Overridepublic void onCompletion(RecordMetadata recordMetadata, Exception e) {if(e != null){System.out.println("记录异常信息到日志表中");}System.out.println(recordMetadata.offset());}
});

4.1参数详解

  • ack

在这里插入图片描述

代码的配置方式:

//ack配置  消息确认机制
properties.put(ProducerConfig.ACKS_CONFIG,"all");

参数的选择说明

确认机制说明
acks=0生产者在成功写入消息之前不会等待任何来自服务器的响应,消息有丢失的风险,但是速度最快
acks=1(默认值)只要集群首领节点收到消息,生产者就会收到一个来自服务器的成功响应
acks=all只有当所有参与赋值的节点全部收到消息时,生产者才会收到一个来自服务器的成功响应

  • retries

在这里插入图片描述

生产者从服务器收到的错误有可能是临时性错误,在这种情况下,retries参数的值决定了生产者可以重发消息的次数,如果达到这个次数,生产者会放弃重试返回错误,默认情况下,生产者会在每次重试之间等待100ms

代码中配置方式:

//重试次数
properties.put(ProducerConfig.RETRIES_CONFIG,10);

  • 消息压缩

默认情况下, 消息发送时不会被压缩。

代码中配置方式:

//数据压缩
properties.put(ProducerConfig.COMPRESSION_TYPE_CONFIG,"lz4");
压缩算法说明
snappy占用较少的 CPU, 却能提供较好的性能和相当可观的压缩比, 如果看重性能和网络带宽,建议采用
lz4占用较少的 CPU, 压缩和解压缩速度较快,压缩比也很客观
gzip占用较多的 CPU,但会提供更高的压缩比,网络带宽有限,可以使用这种算法

使用压缩可以降低网络传输开销和存储开销,而这往往是向 Kafka 发送消息的瓶颈所在。


kafka消费者详解

5.0消费者组

在这里插入图片描述

  • 消费者组(Consumer Group) :指的就是由一个或多个消费者组成的群体

  • 一个发布在Topic上消息被分发给此消费者组中的一个消费者

    • 所有的消费者都在一个组中,那么这就变成了queue模型

    • 所有的消费者都在不同的组中,那么就完全变成了发布-订阅模型

5.1消息有序性

应用场景:

  • 即时消息中的单对单聊天和群聊,保证发送方消息发送顺序与接收方的顺序一致

  • 充值转账两个渠道在同一个时间进行余额变更,短信通知必须要有顺序

在这里插入图片描述

topic分区中消息只能由消费者组中的唯一一个消费者处理,所以消息肯定是按照先后顺序进行处理的。但是它也仅仅是保证Topic的一个分区顺序处理,不能保证跨分区的消息先后处理顺序。 所以,如果你想要顺序的处理Topic的所有消息,那就只提供一个分区。

5.2提交和偏移量

kafka不会像其他JMS队列那样需要得到消费者的确认,消费者可以使用kafka来追踪消息在分区的位置(偏移量)

消费者会往一个叫做_consumer_offset的特殊主题发送消息,消息里包含了每个分区的偏移量。如果消费者发生崩溃或有新的消费者加入群组,就会触发再均衡

在这里插入图片描述

正常的情况

在这里插入图片描述

如果消费者2挂掉以后,会发生再均衡,消费者2负责的分区会被其他消费者进行消费

再均衡后不可避免会出现一些问题

问题一:

在这里插入图片描述

如果提交偏移量小于客户端处理的最后一个消息的偏移量,那么处于两个偏移量之间的消息就会被重复处理。

问题二:

在这里插入图片描述

如果提交的偏移量大于客户端的最后一个消息的偏移量,那么处于两个偏移量之间的消息将会丢失。

如果想要解决这些问题,还要知道目前kafka提交偏移量的方式:

提交偏移量的方式有两种,分别是自动提交偏移量和手动提交

  • 自动提交偏移量

当enable.auto.commit被设置为true,提交方式就是让消费者自动提交偏移量,每隔5秒消费者会自动把从poll()方法接收的最大偏移量提交上去

  • 手动提交 ,当enable.auto.commit被设置为false可以有以下三种提交方式

    • 提交当前偏移量(同步提交)

    • 异步提交

    • 同步和异步组合提交

1.提交当前偏移量(同步提交)

enable.auto.commit设置为false,让应用程序决定何时提交偏移量。使用commitSync()提交偏移量,commitSync()将会提交poll返回的最新的偏移量,所以在处理完所有记录后要确保调用了commitSync()方法。否则还是会有消息丢失的风险。

只要没有发生不可恢复的错误,commitSync()方法会一直尝试直至提交成功,如果提交失败也可以记录到错误日志里。

while (true){ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(1000));for (ConsumerRecord<String, String> record : records) {System.out.println(record.value());System.out.println(record.key());try {consumer.commitSync();//同步提交当前最新的偏移量}catch (CommitFailedException e){System.out.println("记录提交失败的异常:"+e);}}
}

2.异步提交

手动提交有一个缺点,那就是当发起提交调用时应用会阻塞。当然我们可以减少手动提交的频率,但这个会增加消息重复的概率(和自动提交一样)。另外一个解决办法是,使用异步提交的API。

while (true){ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(1000));for (ConsumerRecord<String, String> record : records) {System.out.println(record.value());System.out.println(record.key());}consumer.commitAsync(new OffsetCommitCallback() {@Overridepublic void onComplete(Map<TopicPartition, OffsetAndMetadata> map, Exception e) {if(e!=null){System.out.println("记录错误的提交偏移量:"+ map+",异常信息"+e);}}});
}

3.同步和异步组合提交

异步提交也有个缺点,那就是如果服务器返回提交失败,异步提交不会进行重试。相比较起来,同步提交会进行重试直到成功或者最后抛出异常给应用。异步提交没有实现重试是因为,如果同时存在多个异步提交,进行重试可能会导致位移覆盖。

举个例子,假如我们发起了一个异步提交commitA,此时的提交位移为2000,随后又发起了一个异步提交commitB且位移为3000;commitA提交失败但commitB提交成功,此时commitA进行重试并成功的话,会将实际上将已经提交的位移从3000回滚到2000,导致消息重复消费。

try {while (true){ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(1000));for (ConsumerRecord<String, String> record : records) {System.out.println(record.value());System.out.println(record.key());}consumer.commitAsync();}
}catch (Exception e){e.printStackTrace();System.out.println("记录错误信息:"+e);
}finally {try {consumer.commitSync();}finally {consumer.close();}
}

springboot集成kafka

6.0 入门

1.导入spring-kafka依赖信息

<dependencies><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-web</artifactId></dependency><!-- kafkfa --><dependency><groupId>org.springframework.kafka</groupId><artifactId>spring-kafka</artifactId><exclusions><exclusion><groupId>org.apache.kafka</groupId><artifactId>kafka-clients</artifactId></exclusion></exclusions></dependency><dependency><groupId>org.apache.kafka</groupId><artifactId>kafka-clients</artifactId></dependency><dependency><groupId>com.alibaba</groupId><artifactId>fastjson</artifactId></dependency>
</dependencies>

2.在resources下创建文件application.yml

server:port: 9991
spring:application:name: kafka-demokafka:bootstrap-servers: 192.168.100.130:9092producer:retries: 10key-serializer: org.apache.kafka.common.serialization.StringSerializervalue-serializer: org.apache.kafka.common.serialization.StringSerializerconsumer:group-id: ${spring.application.name}-testkey-deserializer: org.apache.kafka.common.serialization.StringDeserializervalue-deserializer: org.apache.kafka.common.serialization.StringDeserializer

3.消息生产者

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;@RestController
public class HelloController {@Autowiredprivate KafkaTemplate<String,String> kafkaTemplate;@GetMapping("/hello")public String hello(){kafkaTemplate.send("my-topic","hello");return "ok";}
}

4.消息消费者

import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.stereotype.Component;
import org.springframework.util.StringUtils;@Component
public class HelloListener {@KafkaListener(topics = "my-topic")public void onMessage(String message){if(!StringUtils.isEmpty(message)){System.out.println(message);}}
}

6.1传递消息为对象

目前springboot整合后的kafka,因为序列化器是StringSerializer,这个时候如果需要传递对象可以有两种方式

方式一:可以自定义序列化器,对象类型众多,这种方式通用性不强,本章节不介绍

方式二:可以把要传递的对象进行转json字符串,接收消息后再转为对象即可,本项目采用这种方式

  • 发送消息
@GetMapping("/hello")
public String hello(){User user = new User();user.setUsername("xiaowang");user.setAge(18);kafkaTemplate.send("user-topic", JSON.toJSONString(user));return "ok";
}
  • 接收消息
@Component
public class HelloListener {@KafkaListener(topics = "user-topic")public void onMessage(String message){if(!StringUtils.isEmpty(message)){User user = JSON.parseObject(message, User.class);System.out.println(user);}}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/824677.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

构建未来跨境电商平台:系统架构与关键技术

随着全球市场的日益融合和电子商务的快速发展&#xff0c;跨境电商平台成为了连接全球买家和卖家的重要桥梁&#xff0c;为消费者提供了更广阔的购物选择&#xff0c;为企业拓展国际市场提供了更广阔的机会。而要构建一个高效、稳定的跨境电商平台&#xff0c;除了吸引人们的注…

n皇后问题-java

本次n皇后问题主要通过dfs&#xff08;深度优先搜索&#xff09;实现&#xff0c;加深对深度优先搜索的理解。 文章目录 前言 一、n皇后问题 二、算法思路 三、使用步骤 1.代码如下 2.读入数 3.代码运行结果 总结 前言 本次n皇后问题主要通过dfs&#xff08;深度优先搜索&#…

象棋教学辅助软件介绍

背景 各大象棋软件厂商都有丰富的题目提供训练&#xff0c;但是其AI辅助要么太弱&#xff0c;要么要付费解锁&#xff0c;非常不适合我们这些没有赞助的业余棋手自行训练&#xff0c;于是我需要对其进行视觉识别&#xff0c;和AI训练&#xff0c;通过开启这个辅助软件&#xf…

设计模式学习(六)——《大话设计模式》

设计模式学习&#xff08;六&#xff09;——《大话设计模式》 简单工厂模式&#xff08;Simple Factory Pattern&#xff09;&#xff0c;也称为静态工厂方法模式&#xff0c;它属于类创建型模式。 在简单工厂模式中&#xff0c;可以根据参数的不同返回不同类的实例。简单工厂…

构建现代网页的引擎:WebKit架构揭秘

在网络信息迅猛增长的今天&#xff0c;浏览器已经成为我们接触世界的重要窗口。而在浏览器的核心&#xff0c;有一个强大的引擎在默默地支撑着网页的渲染和执行&#xff0c;这就是WebKit。 WebKit的核心组件 WebKit作为开源浏览器引擎&#xff0c;由苹果公司发展而来&#x…

排序(四)——归并排序 + 外排序

目录 1.归并排序递归实现 代码 2.归并排序非递归 代码 3.比较快排、归并和堆排序 4.归并排序实现外排序 1.归并排序递归实现 我们之前对两个有序数组进行排序就用到了归并的思想&#xff0c;对于两个有序数组&#xff0c;我们分别取他们首元素比较大小&#xff0c;取小的插…

Unity给地图物体添加对撞机

在项目/Assets下创建Prefabs文件夹 选择素材拖入层级下&#xff0c;注意此时地图素材有可能看不到&#xff0c;此时选择Tilemap在检查器中修改图层顺序调至最低。 添加对撞机 选择素材&#xff0c;在检查器中点击添加组件Box Collider 2D&#xff0c;将素材拖入Prefabs文件下…

【Arduino IDE 环境配置】

目录 Arduino IDE 环境配置 1. 安装方式2. 操作方法&#xff08;Arduino中文社区&#xff09; 2.1. 安装Arduino IDE2.2. 下载固件2.3. 修改Arduino IDE语言2.4. 添加开发板管理网址2.5. 运行离线包2.6. 检查安装是否成功 下载Arduino IDE&#xff1a; 如果你还没有安装Arduin…

如何使用Postgres的JSONB数据类型进行高效查询

文章目录 解决方案1. 创建包含JSONB列的表2. 插入JSON数据3. 使用GIN索引加速查询4. 执行高效的JSONB查询 示例代码解释 PostgreSQL的JSONB数据类型提供了一种灵活的方式来存储和查询JSON格式的数据。JSONB不仅允许你在PostgreSQL数据库中存储JSON文档&#xff0c;而且还对这些…

科技云报道:大模型加持后,数字人“更像人”了吗?

科技云报道原创。 北京冬奥运AI 虚拟人手语主播、杭州亚运会数字人点火、新华社数字记者、数字航天员小诤…当随着越来越多数字人出现在人们生活中&#xff0c;整个数字人行业也朝着多元化且广泛的应用方向发展&#xff0c;快速拓展到不同行业、不同场景。 面向C端&#xff0…

.NET开源免费的跨平台框架 - MAUI(附学习资料)

前言 前几天分享了一个.NET MAUI开源免费的UI工具包 - Uranium&#xff0c;然后技术群有不少同学问.NET MAUI是不是免费的&#xff1f;能做什么&#xff1f;今天特意写这篇文章来介绍一下.NET开源、免费&#xff08;基于MIT License&#xff09;的跨平台框架&#xff1a;MAUI。…

【刷题笔记】第八天

文章目录 [928. 尽量减少恶意软件的传播 II](https://leetcode.cn/problems/minimize-malware-spread-ii/)方法1&#xff1a;dfs方法2&#xff1a;并查集 [GCD and LCM](https://vjudge.net.cn/problem/Aizu-0005)[Missing Bigram](https://vjudge.net.cn/problem/CodeForces-1…

基于springboot+vue+Mysql的简历系统

开发语言&#xff1a;Java框架&#xff1a;springbootJDK版本&#xff1a;JDK1.8服务器&#xff1a;tomcat7数据库&#xff1a;mysql 5.7&#xff08;一定要5.7版本&#xff09;数据库工具&#xff1a;Navicat11开发软件&#xff1a;eclipse/myeclipse/ideaMaven包&#xff1a;…

数据赋能(60)——要求:数据服务部门能力

“要求&#xff1a;数据服务部门实施数据赋能影响因素”是作为标准的参考内容编写的。 在实施数据赋能中&#xff0c;数据服务部门的能力体现在多个方面&#xff0c;关键能力如下图所示。 在实施数据赋能的过程中&#xff0c;数据服务部门应具备的关键能力如下。 业务理解和沟…

案例与脚本实践:DolphinDB 轻量级实时数仓的构建与应用

DolphinDB 高性能分布式时序数据库&#xff0c;具有分布式计算、事务支持、多模存储、以及流批一体等能力&#xff0c;非常适合作为一款理想的轻量级大数据平台&#xff0c;轻松搭建一站式的高性能实时数据仓库。 本教程将以案例与脚本的方式&#xff0c;介绍如何通过 Dolphin…

MySQL 的事务

事务概念 MySQL事务是一个或者多个的数据库操作&#xff0c;要么全部执行成功&#xff0c;要么全部失败回滚。 事务是通过事务日志来实现的&#xff0c;事务日志包括&#xff1a;redo log和undo log。 事务状态 事务有以下五种状态&#xff1a; 活动的部分提交的失败的中止的…

使用GAN做图像超分——SRGAN,ESRGAN

在GAN出现之前&#xff0c;使用的更多是MSE&#xff0c;PSNR,SSIM来衡量图像相似度&#xff0c;同时也使用他们作为损失函数。 但是这些引以为傲的指标&#xff0c;有时候也不是那么靠谱&#xff1a; MSE对于大的误差更敏感&#xff0c;所以结果就是会倾向于收敛到期望附近&am…

【深度学习】wandb模型训练可视化工具使用方法

【深度学习】wandb模型训练可视化工具使用方法 wandb简介功能介绍登陆注册以及API keysproject和runsproject和runs的关系 wandb的配置实验跟踪版本管理Case可视化分析可视化自动调参&#xff08;wandb.sweep&#xff09;配置wandb.sweep1.配置 sweep_config2.初始化 sweep con…

【python】flask中ORM工具SQLAIchemy,各种数据查询操作详细解析

✨✨ 欢迎大家来到景天科技苑✨✨ &#x1f388;&#x1f388; 养成好习惯&#xff0c;先赞后看哦~&#x1f388;&#x1f388; &#x1f3c6; 作者简介&#xff1a;景天科技苑 &#x1f3c6;《头衔》&#xff1a;大厂架构师&#xff0c;华为云开发者社区专家博主&#xff0c;…

Python 密码学实用指南(全)

原文&#xff1a;zh.annas-archive.org/md5/fe5e9f4d664790ea92fb33d78ca9108d 译者&#xff1a;飞龙 协议&#xff1a;CC BY-NC-SA 4.0 前言 密码学在保护关键系统和敏感信息方面有着悠久而重要的历史。本书将向您展示如何使用 Python 加密、评估、比较和攻击数据。总的来说&…