OpenCV从入门到精通实战(二)——文档OCR识别(tesseract)

导入环境

导入必要的库
numpy: 用于处理数值计算。
argparse: 用于处理命令行参数。
cv2: OpenCV库,用于图像处理。

import numpy as np
import argparse
import cv2

设置命令行参数

ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", default="images/page.jpg", help="Path to the image to be scanned")
args = vars(ap.parse_args())

定义坐标排序函数

对四个坐标点进行排序,确定文档的四个角(左上,右上,右下,左下)。
使用欧氏距离来计算和排序点。

def order_points(pts):# 一共4个坐标点rect = np.zeros((4, 2), dtype = "float32")# 按顺序找到对应坐标0123分别是 左上,右上,右下,左下# 计算左上,右下s = pts.sum(axis = 1)rect[0] = pts[np.argmin(s)]rect[2] = pts[np.argmax(s)]# 计算右上和左下diff = np.diff(pts, axis = 1)rect[1] = pts[np.argmin(diff)]rect[3] = pts[np.argmax(diff)]return rect
  • 此函数用于排序提供的四个点,确保点的顺序为左上、右上、右下和左下,这对后续的透视变换非常重要。

定义透视变换函数

使用cv2.getPerspectiveTransform和cv2.warpPerspective来计算变换矩阵并应用

def four_point_transform(image, pts):# 获取输入坐标点rect = order_points(pts)(tl, tr, br, bl) = rect# 计算输入的w和h值widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))maxWidth = max(int(widthA), int(widthB))heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))maxHeight = max(int(heightA), int(heightB))# 变换后对应坐标位置dst = np.array([[0, 0],[maxWidth - 1, 0],[maxWidth - 1, maxHeight - 1],[0, maxHeight - 1]], dtype = "float32")# 计算变换矩阵M = cv2.getPerspectiveTransform(rect, dst)warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))# 返回变换后结果return warped
  • 接收原始图像和四个顶点坐标,然后应用透视变换,从而获取图像的正视图。

定义图像缩放函数

def resize(image, width=None, height=None, inter=cv2.INTER_AREA):dim = None(h, w) = image.shape[:2]if width is None and height is None:return imageif width is None:r = height / float(h)dim = (int(w * r), height)else:r = width / float(w)dim = (width, int(h * r))resized = cv2.resize(image, dim, interpolation=inter)return resized
  • 用于调整图像尺寸,使图像处理过程中的操作更加高效。

主逻辑部分

  • 图像预处理:

    • 读取图像,调整大小,并转换为灰度图。
    • 应用高斯模糊和Canny边缘检测准备图像进行轮廓检测。
  • 轮廓检测:

    • 使用cv2.findContours寻找边缘,这是寻找文档轮廓的关键步骤。
    • 选择轮廓面积最大的前五个轮廓。
  • 透视变换:

    • 对检测到的轮廓(如果准确地检测到四点)应用透视变换。
    • 将图像从斜视角转换为正视图,便于文档的进一步处理和分析。
  • 结果保存和显示:

    • 应用二值化处理,并保存变换后的扫描图像。
    • 显示原始和扫描后的图像。

关键知识点

  • 高斯模糊 (GaussianBlur): 用于去除图像噪声并平滑图像。
  • Canny边缘检测 (Canny): 用于在图像中检测边缘,是轮廓检测的关键步骤。
  • 轮廓检测 (findContours): 在二值图像中寻找轮廓,用于图形、图像和物体的形状分析。
  • 透视变换 (getPerspectiveTransform, warpPerspective): 在进行文档扫描或修正图像视角时非常有用。
if __name__ == '__main__':# 读取输入image = cv2.imread(args["image"])#坐标也会相同变化ratio = image.shape[0] / 500.0orig = image.copy()image = resize(orig, height = 500)# 预处理gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)gray = cv2.GaussianBlur(gray, (5, 5), 0)edged = cv2.Canny(gray, 75, 200)# 展示预处理结果print("STEP 1: 边缘检测")cv2.imshow("Image", image)cv2.imshow("Edged", edged)cv2.waitKey(0)cv2.destroyAllWindows()# 轮廓检测 opencv3# cnts = cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)[1][0]# cnts = sorted(cnts, key = cv2.contourArea, reverse = True)[:5]# 使用OpenCV 4.x的方式来调用findContourscontours, hierarchy = cv2.findContours(edged.copy(), cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)# 确保轮廓是适当的数据类型cnts = [np.array(cnt, dtype='float32') for cnt in contours]# 排序并选择最大的5个轮廓cnts = sorted(cnts, key=cv2.contourArea, reverse=True)[:5]# 遍历轮廓screenCnt  =  Nonefor c in cnts:# 计算轮廓近似peri = cv2.arcLength(c, True)# C表示输入的点集# epsilon表示从原始轮廓到近似轮廓的最大距离,它是一个准确度参数# True表示封闭的approx = cv2.approxPolyDP(c, 0.02 * peri, True)# 4个点的时候就拿出来if len(approx) == 4:screenCnt = approx.astype(int)breakif screenCnt is not None:# 展示结果print("STEP 2: 获取轮廓")# print(screenCnt)cv2.drawContours(image, [screenCnt], -1, (0, 255, 0), 2)cv2.imshow("Outline", image)cv2.waitKey(0)cv2.destroyAllWindows()# 透视变换warped = four_point_transform(orig, screenCnt.reshape(4, 2) * ratio)# 二值处理warped = cv2.cvtColor(warped, cv2.COLOR_BGR2GRAY)ref = cv2.threshold(warped, 100, 255, cv2.THRESH_BINARY)[1]cv2.imwrite('scan.jpg', ref)# 展示结果print("STEP 3: 变换")cv2.imshow("Original", resize(orig, height = 650))cv2.imshow("Scanned", resize(ref, height = 650))cv2.waitKey(0)
  • Canny算子检测结果图:
    在这里插入图片描述

  • 定 四个顶点
    在这里插入图片描述

  • 仿射变换结果

  • 在这里插入图片描述

OCR识别

Tesseract 是一个开源的光学字符识别(OCR)引擎,最初由惠普实验室于1985年开发,并在2006年由Google赞助成为一个开源项目。Tesseract 能够识别多种格式的图像文件并将它们转换成文本。它支持多种语言的识别,并且可以通过训练来识别新的语言或优化现有语言的识别效果。

主要特点:

  1. 多语言支持:Tesseract 支持100多种语言的识别。
  2. 高度可定制:用户可以训练Tesseract来识别新的字体或优化特定语言的识别。
  3. 多种输出格式:Tesseract 可以输出普通文本、hOCR(带有布局信息的HTML)、PDF等格式。
  4. 集成易用:可以通过命令行使用,也可通过其API集成到其他应用程序中,比如通过pytesseract在Python中使用。

使用方法:

在命令行中,Tesseract 可以简单地通过指定输入图像和输出文件名来使用,如:

tesseract image.png output -l eng

这里-l eng指定了使用英语语言包。

pytesseract:

在Python中,pytesseract是一个将Tesseract引擎功能封装的库,允许Python直接调用Tesseract进行图像到文本的转换。使用前需要确保Tesseract已安装在系统上,并且正确配置了环境变量或在pytesseracttesseract_cmd属性中指定了Tesseract的路径。

应用场景:

  • 文档数字化:将纸质文档扫描后识别为数字文本。
  • 自动化表单处理:从填写的表单中提取信息。
  • 车牌识别:用于交通监控或自动收费系统。
  • 辅助技术:帮助视觉障碍人士阅读印刷材料。

Tesseract是一个功能强大的工具,因其开源和高效被广泛用于商业和研究领域。

1. 导入必要的库

  • PIL (Python Imaging Library): 用于图像的打开和处理。
  • pytesseract: 是Google的Tesseract-OCR引擎的Python封装,用于识别图像中的文字。
  • cv2 (OpenCV): 用于图像处理的库,这里用于读取和预处理图像。
from PIL import Image
import pytesseract
import cv2
import os

2. 图像预处理

  • 读取图像: 使用cv2.imread读取图像文件。
  • 转换为灰度图: 使用cv2.cvtColor将读取的彩色图像转换为灰度图,因为OCR通常在灰度图上进行。
  • 应用阈值或模糊处理:
    • 如果预处理方式为"thresh"(阈值),使用cv2.threshold应用阈值化处理,这可以帮助去除背景噪声并突出文本。
    • 如果预处理方式为"blur"(模糊),使用cv2.medianBlur应用中值模糊,以减少图像噪声。
preprocess = 'blur' #threshimage = cv2.imread('scan.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)if preprocess == "thresh":gray = cv2.threshold(gray, 0, 255,cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]if preprocess == "blur":gray = cv2.medianBlur(gray, 3)

3. 保存处理后的图像

  • 保存文件: 使用cv2.imwrite将处理后的灰度图像临时保存为一个新文件,文件名由当前进程ID命名。

4. 文本识别

  • 使用pytesseract.image_to_string函数读取步骤3中保存的灰度图像文件,识别其中的文本。
filename = "{}.png".format(os.getpid())
cv2.imwrite(filename, gray)text = pytesseract.image_to_string(Image.open(filename))
print(text)
os.remove(filename)cv2.imshow("Image", image)
cv2.imshow("Output", gray)
cv2.waitKey(0)                                   

5. 输出和清理

  • 打印识别的文本
  • 删除临时文件: 使用os.remove删除保存的临时图像文件。
  • 显示图像: 使用cv2.imshow展示原始图像和处理后的图像。
  • 等待按键: 使用cv2.waitKey(0)暂停程序,等待用户按键继续。

知识点总结

  • OpenCV的灰度转换和图像滤波:灰度转换有助于简化数据,滤波有助于减少噪声,这两者都是提高OCR准确性的关键步骤。
  • 阈值处理与模糊处理的选择:不同的图像预处理方法适用于不同类型的图像和需求,阈值处理适用于高对比度图像,而模糊处理适用于噪声较多的图像。
  • pytesseract的使用:封装了Tesseract-OCR引擎,能够从图像中识别和提取文字。

通过仿射变换矫正后图像为:

在这里插入图片描述

识别结果为:
在这里插入图片描述

源码上传地址

链接 ----------------上传地址 文档OCR识别(tesseract)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/823872.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

计算机中的小数表示

文章目录 前言整数表示的缺陷定点小数定点小数加法乘法运算 浮点数IEEE754浮点数标准移码阶码的移码表示 IEEE754中的特殊点两个0非规格化数字正常浮点数无穷大NaN 浮点数简单举例浮点数一些其余特性浮点数计算不符合结合律浮点数舍入规则浮点数与整数之间的相互转换 总结 前言…

记录一次k8s pod之间ip无法访问,问题排查与定位

记录一次k8s pod之间ip无法访问,问题排查与定位 问题展现现象 node之间通信正常 部分node上的pod无法通信 排查有问题node 使用启动网络测试工具 环境准备 docker 数据库mysql 使用有状态副本集合 --- apiVersion: apps/v1 kind: StatefulSet metadata:anno…

生成对抗网络GAN的扩展应用理解

注:本文仅个人学习理解,如需详细内容请看原论文! 一、cycleGAN 1.整体架构: 将图片A通过生成器生成图片B,然后通过判别器判别图片B的真假;并且图片B通过另一个生成器生成A‘,让A和A’近似。 2…

C++ queue priority_queuestack 详解及模拟实现

1. stack的介绍和使用 1.1 stack的介绍 1. stack是一种容器适配器,专门用在具有后进先出操作的上下文环境中,其删除只能从容器的一端进行元素的插入与提取操作。 2. stack是作为容器适配器被实现的,容器适配器即是对特定类封装作为其底层的容…

JVM垃圾回收与算法

1. 如何确定垃圾 1.1 引用计数法 在 Java 中,引用和对象是有关联的。如果要操作对象则必须用引用进行。因此,很显然一个简单 的办法是通过引用计数来判断一个对象是否可以回收。简单说,即一个对象如果没有任何与之关 联的引用,即…

Python pyglet制作彩色圆圈“连连看”游戏

原文链接: Python 一步一步教你用pyglet制作“彩色方块连连看”游戏(续)-CSDN博客文章浏览阅读1.6k次,点赞75次,收藏55次。上期讲到相同的色块连接,链接见: Python 一步一步教你用pyglet制作“彩色方块连连看”游戏-…

Ai2024安装包(亲测可用)

目录 一、软件简介 二、软件下载 一、软件简介 Adobe illustrator,常被称为“AI”,是一种应用于出版、多媒体和在线图像的工业标准矢量插画的软件。作为一款非常好的矢量图形处理工具,该软件主要应用于印刷出版、海报书籍排版、专业插画、多…

Fiddler抓包工具之高级工具栏中的Inspectors的使用

高级工具栏中的Inspectors的使用 Inspectors 页签允许你用多种不同格式查看每个请求和响应的内容。JPG 格式使用 ImageView 就可以看到图片,HTML/JS/CSS 使用 TextView 可以看到响应的内容。Raw标签可以查看原始的符合http标准的请求和响应头。Cookies标签可以看到…

手机拍照技术

拍照技巧 说明: 本文将主要介绍摄影和手机常见技巧; 1. 摄影的基本知识 **说明:**关于摄影,手机和相机的原理都是相同的,不同的是相机在很多方面优于手机,但是专业的设备对于我们这种的非专业的人来说,刚…

Linux时间同步练习

题目如下: 一.配置server主机要求如下: 1.server主机的主机名称为 ntp_server.example.com 2.server主机的IP为: 172.25.254.100 3.server主机的时间为1984-11-11 11:11:11 4.配置server主机的时间同步服务要求可以被所…

重磅,巫师3即将发布mod编辑器并开放创意工坊

热乎乎的消息!巫师3即将推出mod编辑器和开放创意工坊! 根据巫师3官方Steam消息,听说年底将推出mod编辑器,目前已经开始内测。想试用的玩家们,可以到redkit商店页面申请访问权限,体验最新的创意工具。 此外&…

存入Redis的值前面有很多空格

说明:记录一次使用Redis的错误; 场景 在将验证码存入Redis时,发现存入的值前面有很多空格,导致在与前端传入的值比较时,一直是false,验证不通过。如下: 上面这些“□”是占位符,复…

学习笔记(4月17日)vector底层原理

1.vector<vector>底层原理 vector是表示可变大小数组的序列容器&#xff0c;相当于一个动态的数组&#xff0c;比数组优越的在于它具有可动态改变的大小&#xff0c;同时&#xff0c;它写成了类模板&#xff0c;说明可以适用于其他类型&#xff0c;包括vector本身&#…

rust 学习笔记(13-19)

13 迭代器与闭包 Rust 的设计灵感来源于很多现存的语言和技术。其中一个显著的影响就是 函数式编程&#xff08;functional programming&#xff09;。函数式编程风格通常包含将函数作为参数值或其他函数的返回值、将函数赋值给变量以供之后执行等等。 闭包&#xff08;Closu…

游戏、app抓包

文章目录 协议app抓包游戏抓包 协议 在抓包之前&#xff0c;首先我们要对每个程序使用什么协议有个大致的了解&#xff0c;比如网页这种就是走的http协议。 在一些app中我们通过发送一个请求&#xff0c;然后服务器接受&#xff0c;响应&#xff0c;返回一个数据包&#xff0c…

网站模板-慈善捐赠基金会网站模板 Bootstrap4 html

目录 一.前言 二.预览 三.下载链接 一.前言 这是一个慈善网站的页面。页面包含了导航栏、横幅部分、关于、使命、新闻、活动、捐赠和页脚等不同的部分。该网站还包含了一些CSS样式和JavaScript脚本来实现交互和样式效果。 这个网站的具体结构如下&#xff1a; 导航栏部分&a…

吐血整理102个Python项目,从基础到高级,练完你就牛了!

前言 Python 初学者在迈过安装编程环境和基本语法的门槛&#xff0c;准备大展身手的时候&#xff0c;可能突然就会进入迷茫期&#xff1a; 不知道做些什么、再学些什么。。。 然后对编程的兴趣就会慢慢消退&#xff0c;找不到坚持下去的理由&#xff0c;从而慢慢淡忘之前学会…

OpenCV基本图像处理操作(九)——特征匹配

Brute-Force蛮力匹配 Brute-Force蛮力匹配是一种简单直接的模式识别方法&#xff0c;经常用于计算机视觉和数字图像处理领域中的特征匹配。该方法通过逐一比较目标图像中的所有特征点与源图像中的特征点来寻找最佳匹配。这种方法的主要步骤包括&#xff1a; 特征提取&#xff…

热烈祝贺中国特医首次获得蒙特国际品质奖!中国特医健效达品质永攀世界高峰

近日&#xff0c;第63届Monde Selection品质评鉴活动圆满落幕&#xff0c;健效达旗下优康力和优益力产品凭借其卓越品质&#xff0c;成功摘得世界蒙特奖&#xff0c;这是中国特医食品首次获得蒙特奖国际品质奖。 健效达特医树立世界特医新标杆&#xff0c;永攀世界高峰&#xf…

Java定时任务

一、java.util.Timer java.util.Timer 类允许您在未来的某个时间执行一个任务&#xff0c;或者在一定的时间间隔执行任务。您可以创建一个 Timer 实例&#xff0c;并调用其 schedule() 方法来安排任务的执行。这种方式比较简单&#xff0c;但在高并发环境下可能不够灵活。 1.…