OpenCV基本图像处理操作(四)——傅立叶变换

傅里叶变换的作用

  • 高频:变化剧烈的灰度分量,例如边界

  • 低频:变化缓慢的灰度分量,例如一片大海

滤波

  • 低通滤波器:只保留低频,会使得图像模糊

  • 高通滤波器:只保留高频,会使得图像细节增强

  • opencv中主要就是cv2.dft()和cv2.idft(),输入图像需要先转换成np.float32 格式。

  • 得到的结果中频率为0的部分会在左上角,通常要转换到中心位置,可以通过shift变换来实现。

  • cv2.dft()返回的结果是双通道的(实部,虚部),通常还需要转换成图像格式才能展示(0,255)。

import numpy as np
import cv2
from matplotlib import pyplot as pltimg = cv2.imread('lena.jpg',0)img_float32 = np.float32(img)dft = cv2.dft(img_float32, flags = cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)
# 得到灰度图能表示的形式
magnitude_spectrum = 20*np.log(cv2.magnitude(dft_shift[:,:,0],dft_shift[:,:,1]))plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(magnitude_spectrum, cmap = 'gray')
plt.title('Magnitude Spectrum'), plt.xticks([]), plt.yticks([])
plt.show()

在这里插入图片描述

傅立叶变换实现低通滤波
import numpy as np
import cv2
from matplotlib import pyplot as pltimg = cv2.imread('lena.jpg',0)img_float32 = np.float32(img)dft = cv2.dft(img_float32, flags = cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)rows, cols = img.shape
crow, ccol = int(rows/2) , int(cols/2)     # 中心位置# 低通滤波
mask = np.zeros((rows, cols, 2), np.uint8)
mask[crow-30:crow+30, ccol-30:ccol+30] = 1# IDFT
fshift = dft_shift*mask
f_ishift = np.fft.ifftshift(fshift)
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:,:,0],img_back[:,:,1])plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(img_back, cmap = 'gray')
plt.title('Result'), plt.xticks([]), plt.yticks([])plt.show()                

在这里插入图片描述

傅立叶变换实现高通滤波
img = cv2.imread('lena.jpg',0)img_float32 = np.float32(img)dft = cv2.dft(img_float32, flags = cv2.DFT_COMPLEX_OUTPUT)
dft_shift = np.fft.fftshift(dft)rows, cols = img.shape
crow, ccol = int(rows/2) , int(cols/2)     # 中心位置# 高通滤波
mask = np.ones((rows, cols, 2), np.uint8)
mask[crow-30:crow+30, ccol-30:ccol+30] = 0# IDFT
fshift = dft_shift*mask
f_ishift = np.fft.ifftshift(fshift)
img_back = cv2.idft(f_ishift)
img_back = cv2.magnitude(img_back[:,:,0],img_back[:,:,1])plt.subplot(121),plt.imshow(img, cmap = 'gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122),plt.imshow(img_back, cmap = 'gray')
plt.title('Result'), plt.xticks([]), plt.yticks([])plt.show()    

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/821630.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Golang | Leetcode Golang题解之第31题下一个排列

题目: 题解: func nextPermutation(nums []int) {n : len(nums)i : n - 2for i > 0 && nums[i] > nums[i1] {i--}if i > 0 {j : n - 1for j > 0 && nums[i] > nums[j] {j--}nums[i], nums[j] nums[j], nums[i]}reverse…

Day 14 网络协议

常见网络设备:交换机 路由器 中继器 多协议网关(路由器的前身) 交换机:用于连接统一网络的设备,实现内网设备通信。 从广义上分为:局域网交换机,广域网交换机 从网络构成分为:接…

Jenkins配置windows/linux从节点

背景: 环境:jenkins环境(Ubuntu) 节点机器:Linux、Windows 前置条件: 节点机器:安装java、allure、python 1 Linux节点管理机器添加 1.1 系统管理->节点列表->New Node 1.2 节点配置…

「GO基础」文件名规范、关键字与标识符

💝💝💝欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:「stormsha的主页」…

元数据管理Atlas

文章目录 一、Atlas概述1、Atlas入门2、Atlas架构原理 二、Atlas安装1、安装环境准备1.1 安装Solr-7.7.31.2 Atlas2.1.0安装 2、Atlas配置2.1 Atlas集成Hbase2.2 Atlas集成Solr2.3 Atlas集成Kafka2.4 Atlas Server配置2.5 Kerberos相关配置2.6 Atlas集成Hive 3、Atlas启动 三、…

用海外云手机高效率运营TikTok!

很多做国外社媒运营的公司,想要快速引流,往往一个账号是不够的,多数都是矩阵养号的方式,运营多个TikToK、Facebook、Instagram等账号,慢慢沉淀流量变现,而他们都在用海外云手机这款工具! 海外云…

知识管理系统(KMS):一文扫盲,能和chatGPT相融吗?

一、什么是KMS,有什么作用 KMS(Knowledge Management System)知识管理系统是一种用于组织、存储、共享和利用知识的软件系统或平台。它旨在帮助组织有效地管理和利用内部和外部的知识资源,以支持决策、创新和持续学习。 KMS知识管…

华为云CodeArts IDE For Python 快速使用指南

CodeArts IDE 带有 Python 扩展,为 Python 语言提供了广泛的支持。Python 扩展可以利用 CodeArts IDE 的代码补全、验证、调试和单元测试等特性,与多种 Python 解释器协同工作,轻松切换包括虚拟环境和 conda 环境的 Python 环境。本文简要概述…

OpenCV基本图像处理操作(三)——图像轮廓

轮廓 cv2.findContours(img,mode,method) mode:轮廓检索模式 RETR_EXTERNAL :只检索最外面的轮廓;RETR_LIST:检索所有的轮廓,并将其保存到一条链表当中;RETR_CCOMP:检索所有的轮廓,并将他们组…

魔方网表 存在 mailupdate.jsp接口 任意文件上传漏洞

声明: 本文仅用于技术交流,请勿用于非法用途 由于传播、利用此文所提供的信息而造成的任何直接或者间接的后果及损失,均由使用者本人负责,文章作者不为此承担任何责任。 简介 魔方网表mailupdate.jsp接口存在任意文件上传漏洞 …

ChatGPT深度科研应用、数据分析及机器学习、AI绘图与高效论文撰写教程

原文链接:ChatGPT深度科研应用、数据分析及机器学习、AI绘图与高效论文撰写https://mp.weixin.qq.com/s?__bizMzUzNTczMDMxMg&mid2247601506&idx2&sn5dae3fdc3e188e81b8a6142c5ab8c994&chksmfa820c85cdf58593356482880998fc6eb98e6889b261bf621e1d…

python生成二维码

要在Python中生成二维码,可以使用第三方库qrcode。首先,确保已经安装了qrcode库: pip install qrcode然后,使用以下代码生成二维码: import qrcodedata "https://mp.csdn.net/mp_blog/creation/editor?spm100…

Kafka服务端(含Zookeeper)一键自启软件

1. 前言 本文介绍了一款集成图形化界面配置和一键自启功能的Kafka与Zookeeper服务管理软件。该软件通过直观易用的图形界面,使用户能够轻松完成Kafka和Zookeeper的配置工作,有效避免了手动编辑配置文件可能带来的错误和不便。同时,软件还提供…

【附gpt4.0升级秘笈】百度智能云万源全新一代智能计算操作系统发布:引领AI新纪元

在科技日新月异的今天,人工智能(AI)作为引领未来发展的关键技术,正逐步渗透到社会的每一个角落。百度,作为中国AI领域的领军企业,始终站在技术创新的前沿,不断推出引领行业的重磅产品。今日&…

论文略读:SWE-bench: Can Language Models Resolve Real-world Github Issues?

iclr 2024 oral reviewer评分 5668 现有的语言模型(LMs)的基准测试已经饱和,无法捕捉到最先进的语言模型能做什么和不能做什么的前沿。 ——>要具有挑战性的基准测试论文引入了SWE-bench 在现实软件工程环境中评估语言模型的基准测试 ​​…

使用 code-server 搭建在线的 VS Code 编辑器

文章目录 前言安装体验后记 前言 VS Code 是一个非常流行的代码编辑器,安装各种拓展下也可以当作全功能的IDE使用。VS Code本身是基于Web方案构建的,完全可以搭建服务器,然后通过浏览器访问。事实上官方就是这么设计的。现在打开任何一个Git…

【数据分享】历次人口普查数据(一普到七普)

国之情,民之意,查人口,定大计。 第七次人口普查已经结束,那么,为了方便大家把七普数据与之前的数据做对比,地理遥感生态网整理了从一普到七普人口数据,并且把第七次人口普查的数据也一并分享给…

RISC-V微架构验证

对于RISC-V处理器因其灵活性和可扩展性而受到广泛关注,但如果没有高效验证策略,错误的设计实现可能会影响RISC-V的继续推广。 在RISC-V出现之前,对于大多数半导体公司来说,处理器验证几乎成为一门屠龙之技。专业知识被浓缩到少数几…

文献速递:深度学习肝脏肿瘤诊断---基于深度学习的表型分类重新划分联合肝细胞胆管癌

Title 题目 Deep learning-based phenotyping reclassifies combined hepatocellular cholangiocarcinoma 基于深度学习的表型分类重新划分联合肝细胞胆管癌 01文献速递介绍 Primary liver cancer arises either from hepatocytic or biliary lineage cells, giving rise to…

2024中国内燃机展-北京汽车发动机零部件展

2024第二十三届中国国际内燃机与零部件展览会 由中国内燃机工业协会主办、中国机床专用技术设备有限公司、汽车工艺装备成套开发集团协办的2024中国国际内燃机及动力装备博览会(简称“动博会”)将于2024年10月11日-13日在亦创国际会展中心隆重举办。本届…