OpenCV基本图像处理操作(三)——图像轮廓

轮廓

cv2.findContours(img,mode,method)

mode:轮廓检索模式

  • RETR_EXTERNAL :只检索最外面的轮廓;
  • RETR_LIST:检索所有的轮廓,并将其保存到一条链表当中;
  • RETR_CCOMP:检索所有的轮廓,并将他们组织为两层:顶层是各部分的外部边界,第二层是空洞的边界;
  • RETR_TREE:检索所有的轮廓,并重构嵌套轮廓的整个层次;

method:轮廓逼近方法

  • CHAIN_APPROX_NONE:以Freeman链码的方式输出轮廓,所有其他方法输出多边形(顶点的序列)。
  • CHAIN_APPROX_SIMPLE:压缩水平的、垂直的和斜的部分,也就是,函数只保留他们的终点部分。
  • 在这里插入图片描述
def cv_show(img,name):cv2.imshow(name,img)cv2.waitKey()cv2.destroyAllWindows()
img = cv2.imread('contours.png')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
binary, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cv_show(img,'img')

在这里插入图片描述

#传入绘制图像,轮廓,轮廓索引,颜色模式,线条厚度
# 注意需要copy,要不原图会变。。。
draw_img = img.copy()
res = cv2.drawContours(draw_img, contours, -1, (0, 0, 255), 2)
cv_show(res,'res')

在这里插入图片描述

面积、周长参数
cnt = contours[0]
#面积
cv2.contourArea(cnt)
#周长,True表示闭合的
cv2.arcLength(cnt,True)

在这里插入图片描述

模拟绘制轮廓
img = cv2.imread('contours2.png')gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cnt = contours[0]draw_img = img.copy()
res = cv2.drawContours(draw_img, [cnt], -1, (0, 0, 255), 2)
cv_show(res,'res')

33在这里插入图片描述

轮廓近似
epsilon = 0.15*cv2.arcLength(cnt,True) 
approx = cv2.approxPolyDP(cnt,epsilon,True)draw_img = img.copy()
res = cv2.drawContours(draw_img, [approx], -1, (0, 0, 255), 2)
cv_show(res,'res')

在这里插入图片描述

边界矩形
img = cv2.imread('contours.png')gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cnt = contours[0]x,y,w,h = cv2.boundingRect(cnt)
img = cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2)
cv_show(img,'img')area = cv2.contourArea(cnt)
x, y, w, h = cv2.boundingRect(cnt)
rect_area = w * h
extent = float(area) / rect_area
print ('轮廓面积与边界矩形比',extent)

在这里插入图片描述

外接圆
(x,y),radius = cv2.minEnclosingCircle(cnt) 
center = (int(x),int(y)) 
radius = int(radius) 
img = cv2.circle(img,center,radius,(0,255,0),2)
cv_show(img,'img')

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/821613.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

魔方网表 存在 mailupdate.jsp接口 任意文件上传漏洞

声明: 本文仅用于技术交流,请勿用于非法用途 由于传播、利用此文所提供的信息而造成的任何直接或者间接的后果及损失,均由使用者本人负责,文章作者不为此承担任何责任。 简介 魔方网表mailupdate.jsp接口存在任意文件上传漏洞 …

数据仓库—维度建模—事实表设计

事实表 事实表是数据仓库中的核心表,用于记录与业务过程相关的事实信息,是进行数据分析和挖掘的主要数据来源。 在ER模型中抽象出了有实体、关系、属性三种类别,在现实世界中,每一个操作型事件,基本都是发生在实体之间的,伴随着这种操作事件的发生,会产生可度量的值,…

ChatGPT深度科研应用、数据分析及机器学习、AI绘图与高效论文撰写教程

原文链接:ChatGPT深度科研应用、数据分析及机器学习、AI绘图与高效论文撰写https://mp.weixin.qq.com/s?__bizMzUzNTczMDMxMg&mid2247601506&idx2&sn5dae3fdc3e188e81b8a6142c5ab8c994&chksmfa820c85cdf58593356482880998fc6eb98e6889b261bf621e1d…

Git 实用技巧2——新建空白分支 | 重命名分支 | 回退到历史 commit

git version 2.39.2.windows 1. 新建空白分支 参考:Git - git-switch Documentation: https://git-scm.com/docs/git-switch/zh_HANS-CN 使用 --orphan 参数,创建一条不基于任何现有提交的空白分支。其初始提交(即 HEAD)不指向任…

箭头函数多个函数体

当箭头函数需要多个语句组成函数体时,需要使用花括号 {} 将多个语句包裹起来,并且需要显式地使用 return 关键字返回值。下面是一个包含多个函数体语句的箭头函数示例:‘ var greet name > { var greeting "Hello, "; …

了解在 Docker 和 Kubernetes 中运行Go程序的影响

根据 2021 年对 Go 开发人员的调查,使用 Go 编写服务是最常见的用途。同时,Kubernetes 是部署这些服务的最广泛使用的平台。了解在 Docker 和 Kubernets 中运行 Go 的含义非常重要,可防止出现 CPU 节流等常见情况。 GOMAXPROCS 变量定义了负责同时执行用户级代码的操作系统线…

python生成二维码

要在Python中生成二维码,可以使用第三方库qrcode。首先,确保已经安装了qrcode库: pip install qrcode然后,使用以下代码生成二维码: import qrcodedata "https://mp.csdn.net/mp_blog/creation/editor?spm100…

c++ std::map 介绍

在 C 中,字典通常指的是 std::map,它是一个关联容器,用于存储键-值对,并且按照键的顺序进行排序。除了 std::map,C 标准库还提供了其他一些类似字典的容器,比如 std::unordered_map(无序字典&am…

Kafka服务端(含Zookeeper)一键自启软件

1. 前言 本文介绍了一款集成图形化界面配置和一键自启功能的Kafka与Zookeeper服务管理软件。该软件通过直观易用的图形界面,使用户能够轻松完成Kafka和Zookeeper的配置工作,有效避免了手动编辑配置文件可能带来的错误和不便。同时,软件还提供…

【附gpt4.0升级秘笈】百度智能云万源全新一代智能计算操作系统发布:引领AI新纪元

在科技日新月异的今天,人工智能(AI)作为引领未来发展的关键技术,正逐步渗透到社会的每一个角落。百度,作为中国AI领域的领军企业,始终站在技术创新的前沿,不断推出引领行业的重磅产品。今日&…

SRTP + RTCP + SCTP

SRTP(Secure Real-time Transport Protocol) 主要功能:SRTP 是 RTP 的一个扩展,提供额外的安全特性,如加密、完整性校验和认证。它旨在保护实时传输的音频和视频流不被窃听或篡改。加密传输:SRTP 使用强加密…

论文略读:SWE-bench: Can Language Models Resolve Real-world Github Issues?

iclr 2024 oral reviewer评分 5668 现有的语言模型(LMs)的基准测试已经饱和,无法捕捉到最先进的语言模型能做什么和不能做什么的前沿。 ——>要具有挑战性的基准测试论文引入了SWE-bench 在现实软件工程环境中评估语言模型的基准测试 ​​…

使用 code-server 搭建在线的 VS Code 编辑器

文章目录 前言安装体验后记 前言 VS Code 是一个非常流行的代码编辑器,安装各种拓展下也可以当作全功能的IDE使用。VS Code本身是基于Web方案构建的,完全可以搭建服务器,然后通过浏览器访问。事实上官方就是这么设计的。现在打开任何一个Git…

(Talk-Bot,ichat助手,ChatK,DGAL,NextChat,FreeGPT,动点原版chatgpt)分享7个好用ChatGPT

目录 目录 1、Talk-Bot 2、ichat助手 3、ChatK 4、DGAI 5、NextChat 6、Chkzh-Aink

【数据分享】历次人口普查数据(一普到七普)

国之情,民之意,查人口,定大计。 第七次人口普查已经结束,那么,为了方便大家把七普数据与之前的数据做对比,地理遥感生态网整理了从一普到七普人口数据,并且把第七次人口普查的数据也一并分享给…

RISC-V微架构验证

对于RISC-V处理器因其灵活性和可扩展性而受到广泛关注,但如果没有高效验证策略,错误的设计实现可能会影响RISC-V的继续推广。 在RISC-V出现之前,对于大多数半导体公司来说,处理器验证几乎成为一门屠龙之技。专业知识被浓缩到少数几…

文献速递:深度学习肝脏肿瘤诊断---基于深度学习的表型分类重新划分联合肝细胞胆管癌

Title 题目 Deep learning-based phenotyping reclassifies combined hepatocellular cholangiocarcinoma 基于深度学习的表型分类重新划分联合肝细胞胆管癌 01文献速递介绍 Primary liver cancer arises either from hepatocytic or biliary lineage cells, giving rise to…

2024中国内燃机展-北京汽车发动机零部件展

2024第二十三届中国国际内燃机与零部件展览会 由中国内燃机工业协会主办、中国机床专用技术设备有限公司、汽车工艺装备成套开发集团协办的2024中国国际内燃机及动力装备博览会(简称“动博会”)将于2024年10月11日-13日在亦创国际会展中心隆重举办。本届…

通过matlab分别对比PSO,反向学习PSO,多策略改进反向学习PSO三种优化算法

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 4.1 粒子群优化算法 (PSO) 4.2 反向学习粒子群优化算法 (OPSO) 4.3 多策略改进反向学习粒子群优化算法 (MSO-PSO) 5.完整程序 1.程序功能描述 分别对比PSO,反向学习PSO,多策略改进反向学…

为数据穿上安全的外衣——零售电商场景下的数据安全体系建设

在电子商务交易过程中,会涉及大量的个人和财务数据的传输和处理,随着电子商务的发展,数据安全风险也成为一个备受关注的问题。 而跨境电商,属于出海业务,涉及到海外不同国家的政策法规,且数据作为电商的业…