ChatGPT深度科研应用、数据分析及机器学习、AI绘图与高效论文撰写教程

原文链接:ChatGPT深度科研应用、数据分析及机器学习、AI绘图与高效论文撰写icon-default.png?t=N7T8https://mp.weixin.qq.com/s?__biz=MzUzNTczMDMxMg==&mid=2247601506&idx=2&sn=5dae3fdc3e188e81b8a6142c5ab8c994&chksm=fa820c85cdf58593356482880998fc6eb98e6889b261bf621e1d43038ed0376b68fefe8703df&token=1175537617&lang=zh_CN#rd

第一:2024大语言模型最新进展与ChatGPT4基础入门

1、2024 AIGC技术最新进展

2、ChatGPT概述(GPT-1、GPT-2、GPT-3、GPT-3.5、GPT-4模型的演变)

3、ChatGPT对话初体验(注册与充值、购买方法)

4、GPT-4与GPT-3.5的区别

5、GPT-4与国内外其他大语言模型(Claude、谷歌Gemini、百度文心一言、科大讯飞星火、阿里巴巴通义千问、月之暗面Kimi等)的区别

6、ChatGPT科研必备GPTs(Data Interpreter、Wolfram、WebPilot、MixerBox Scholar、ScholarAI、Show Me、AskYourPDF等)

7、定制自己的专属GPTs(制作专属GPTs的两种方式:聊天/配置参数、利用Knowledge上传本地知识库提升专属GPTs性能、利用Actions通过API获取外界信息、专属GPTs的分享)

8、GPT Store简介与使用(信息检索与快速整理、论文撰写、论文翻译与润色、代码编写等)
第二ChatGPT4 提示词使用方法与技巧

1、ChatGPT Prompt (提示词)使用技巧(为ChatGPT设定身份、明确任务内容、提供任务相关的背景、举一个参考范例、指定返回的答案格式等)

2、常用的ChatGPT提示词模板

3、基于模板的ChatGPT提示词优化

4、利用ChatGPT4 及插件优化提示词

5、通过promptperfect.jina.ai优化提示词

6、利用ChatGPT4 及插件生成提示词

7、ChatGPT4突破Token限制实现接收或输出万字长文(什么是Token?Token数与字符数之间的互相换算、五种方法提交超过Token限制的文本、四种方法让ChatGPT的输出突破Token限制)

8、控制ChatGPT的输出长度(使用修饰语、限定回答的范围、通过上下文限定、限定数量等)

9、利用ChatGPT4 及插件保存喜欢的ChatGPT提示词并一键调用

10、利用ChatGPT4实现网页版游戏的设计、代码自动生成与运行
第三ChatGPT4助力日常生活、学习与工作

1、ChatGPT4助力中小学生功课辅导(写作文、作文批改、求解数学题、练习英语听说读写、物理计算、化学计算等)

2、ChatGPT4助力文案撰写与润色修改

3、ChatGPT4助力家庭健康管理(化验单结果解读、就诊咨询与初步诊断、常见慢病管理、日常营养膳食建议等)

4、ChatGPT4助力大学生求职与就业(撰写简历、模拟面试、职业规划等)

5、ChatGPT4助力商业工作(行业竞品检索与分析、产品创意设计与建议、推广营销策略与方案制定、撰写合同)

6、利用ChatGPT4 创建精美的思维导图

7、利用ChatGPT4 生成流程图、甘特图

8、利用ChatGPT4 制作PPT

9、利用ChatGPT4自动创建视频

10、ChatGPT4辅助教师高效备课(苏格拉底式教学、为不同专业学生生成不同的教学内容、围绕知识点生成不同难度的题目检测学生的学习效果等)

11、ChatGPT4辅助学生高效学习(利用插件生成个性化学习计划)
第四ChatGPT4助力信息检索、总结分析、论文写作与投稿

1、传统信息检索方法与技巧总结(Google Scholar、ResearchGate、Sci-Hub、GitHub、关键词检索+同行检索、文献订阅)

2、利用ChatGPT4 实现联网检索文献

3、利用ChatGPT4阅读与总结分析学术论文内容(三句话摘要、子弹式要点摘要、QA摘要、表格摘要、关键词与关键句提取、页面定位、多文档对比、情感分析)

4、利用ChatGPT4 总结Youtube视频内容

5、利用ChatGPT4完成学术论文的选题设计与优化

6、利用ChatGPT4自动生成论文的总体框架、论文摘要、前言介绍、文献综述、完整长篇论文等

7、利用ChatGPT4完成论文翻译(指定翻译角色和翻译领域、提供背景提示)

8、利用ChatGPT4实现论文语法校正

9、利用ChatGPT4完成段落结构及句子逻辑润色

10、利用ChatGPT4完成论文降重

11、利用ChatGPT4完成论文评审意见的撰写与回复
第五ChatGPT4助力Python编程入门、科学计算、数据可视化、数据预处理

1、Python环境搭建(Python软件下载、安装与版本选择;PyCharm下载、安装;Python之Hello World;第三方模块的安装与使用;Python 2.x与Python 3.x对比)

2、Python基本语法(Python变量命名规则;Python基本数学运算;Python常用变量类型的定义与操作;Python程序注释)

3、Python流程控制(条件判断;for循环;while循环;break和continue)

4、Python函数与对象(函数的定义与调用;函数的参数传递与返回值;变量作用域与全局变量;对象的创建与使用)

5、Matplotlib的安装与图形绘制(设置散点、线条、坐标轴、图例、注解等属性;绘制多图;图的嵌套;折线图、柱状图、饼图、地图等各种图形的绘制)

6、Seaborn、Bokeh、Pyecharts等高级绘图库的安装与使用(动态交互图的绘制、开发大数据可视化页面等)

7、科学计算模块库(Numpy的安装;ndarray类型属性与数组的创建;数组索引与切片;Numpy常用函数简介与使用)

8、利用ChatGPT4上传本地数据(Excel/CSV表格、txt文本、PDF、图片等)

9、利用ChatGPT4 爬取第三方网站数据

10、利用ChatGPT4 实现常见文件格式之间的转换

11、利用ChatGPT4 实现图像处理(图像缩放、旋转、裁剪、去噪与去模糊)

12、利用ChatGPT4 实现描述性统计分析(数据的频数分析:统计直方图;数据的集中趋势分析:数据的相关分析)

13、常用的数据预处理方法(数据标准化与归一化、数据异常值与缺失值处理、数据离散化及编码处理、手动生成新特征)

14、融合ChatGPT 4与Python的数据预处理代码自动生成与运行

15、利用ChatGPT4实现数据统计分析与可视化(自动生成统计图表)

16、利用ChatGPT4 实现代码逐行
17、利用ChatGPT4 实现代码Bug调试与自动修改
第六ChatGPT4助力机器学习建模

1、BP神经网络的基本原理(人工神经网络的分类有哪些?BP神经网络的拓扑结构和训练过程是怎样的?什么是梯度下降法?)

2、BP神经网络的Python代码实现(划分训练集和测试集、数据归一化)

3、BP神经网络参数的优化(隐含层神经元个数、学习率、初始权值和阈值等如何设置?什么是交叉验证?)

4、值得研究的若干问题(欠拟合与过拟合、评价指标选择、样本不平衡等)

5、前向型神经网络中的ChatGPT提示词库讲解

6、利用ChatGPT4实现BP神经网络、极限学习机模型的代码自动生成与运行

7、KNN分类模型(KNN算法的核心思想、距离度量方式的选择、K值的选取)

8、朴素贝叶斯分类模型(伯努利朴素贝叶斯BernoulliNB、类朴素贝叶斯CategoricalNB、高斯朴素贝叶斯besfGaussianNB、多项式朴素贝叶斯MultinomialNB、补充朴素贝叶斯ComplementNB)

9、SVM的工作原理(核函数的作用是什么?什么是支持向量?

10、SVM扩展知识(如何解决多分类问题?)

11、KNN、贝叶斯分类与SVM中的ChatGPT提示词库讲解

12、利用ChatGPT4实现KNN、贝叶斯分类、SVM模型的代码自动生成与运行

13、决策树的工作原理(微软小冰读心术的启示;什么是信息熵和信息增益?ID3算法和C4.5算法的区别与联系);决策树除了建模型之外,还可以帮我们做什么事情?

14、随机森林的工作原理(为什么需要随机森林算法?广义与狭义意义下的“随机森林”分别指的是什么?“随机”的本质是什么?怎样可视化、解读随机森林的结果?)

15、Bagging与Boosting的区别与联系

16、AdaBoost vs. Gradient Boosting的工作原理

17、常用的GBDT算法框架(XGBoost、LightGBM)

18、决策树、随机森林、XGBoost、LightGBM中的ChatGPT提示词库

19、利用ChatGPT4实现决策树、随机森林、XGBoost、LightGBM模型的代码自动生成与运行
第七ChatGPT 4助力机器学习模型优化:变量降维与特征选择​​​​​​​

1、主成分分析(PCA)的基本原理

2、偏最小二乘(PLS)的基本原理

3、常见的特征选择方法(优化搜索、Filter和Wrapper等;前向与后向选择法;区间法;无信息变量消除法;正则稀疏优化方法等)

4、遗传算法(Genetic Algorithm, GA)的基本原理(以遗传算法为代表的群优化算法的基本思想是什么?选择、交叉、变异三个算子的作用分别是什么?)

5、PCA、PLS、特征选择、群优化算法的ChatGPT提示词库

6、利用ChatGPT4 及插件实现变量降维与特征选择算法的代码自动生成与运行
第八ChatGPT 4助力卷积神经网络建模​​​​​​​

1、深度学习(深度学习大事记、深度学习与传统机器学习的区别与联系)

2、卷积神经网络的基本原理(什么是卷积核、池化核?CNN的典型拓扑结构是怎样的?CNN的权值共享机制是什么?)

3、卷积神经网络的进化史:LeNet、AlexNet、Vgg-16/19、GoogLeNet、ResNet等经典深度神经网络的区别与联系

4、利用PyTorch构建卷积神经网络(Convolution层、Batch Normalization层、Pooling层、Dropout层、Flatten层等)

5、卷积神经网络调参技巧(卷积核尺寸、卷积核个数、移动步长、补零操作、池化核尺寸等参数与特征图的维度,以及模型参数量之间的关系是怎样的?)

6、卷积神经网络中的ChatGPT提示词库

7、利用ChatGPT4 及插件实现卷积神经网络模型的代码自动生成与运行

(1)CNN预训练模型实现物体识别;

(2)利用卷积神经网络抽取抽象特征;

(3)自定义卷积神经网络拓扑结构
第九ChatGPT 4助力迁移学习建模​​​​​​​

1、迁移学习算法的基本原理(为什么需要迁移学习?迁移学习的基本思想是什么?)

2、基于深度神经网络模型的迁移学习算法

3、迁移学习中的ChatGPT提示词库

4、利用ChatGPT4及插件实现迁移学习模型的代码自动生成与运行
第十ChatGPT 4助力生成式对抗网络建模​​​​​​​

1、生成式对抗网络GAN(什么是对抗生成网络?为什么需要对抗生成网络?对抗生成网络可以帮我们做什么?GAN给我们带来的启示)

2、GAN的基本原理及GAN进化史

3、生成式对抗网络中的ChatGPT提示词库讲解

4、利用ChatGPT4 及插件实现生成式对抗网络模型的代码自动生成与运行
第十一ChatGPT 4助力RNN、LSTM建模​​​​​​​

1、循环神经网络RNN的基本工作原理

2、长短时记忆网络LSTM的基本工作原理

3、RNN与LSTM中的ChatGPT提示词库

4、利用ChatGPT4 及插件实现RNN、LSTM模型的代码自动生成与运行
第十二ChatGPT 4助力YOLO目标检测建模​​​​​​​

1、什么是目标检测?目标检测与目标识别的区别与联系

2、YOLO模型的工作原理,YOLO模型与传统目标检测算法的区别

3、YOLO模型中的ChatGPT提示词库

4、利用ChatGPT4 及插件实现YOLO目标检测模型的代码自动生成与运行

(1)利用预训练好的YOLO模型实现目标检测(图像检测、视频检测、摄像头实时检测);

(2)数据标注演示(LabelImage使用方法);

(3)训练自己的目标检测数据集
第十三ChatGPT 4助力自编码器建模​​​​​​​

1、什么是自编码器(Auto-Encoder, AE)?

2、经典的几种自编码器模型原理介绍(AE、Denoising AE, Masked AE)

3、自编码器模型中的ChatGPT提示词库

4、利用ChatGPT4 及插件实现自编码器模型的代码自动生成与运行

(1)基于自编码器的噪声去除;

(2)基于自编码器的手写数字特征提取与重构;
第十四ChatGPT4助力机器学习与深度学习建模的行业应用​​​​​​​

1、利用ChatGPT4实现近红外光谱分析模型的建立、代码自动生成与运行

2、利用ChatGPT4实现生物医学信号(时间序列、图像、视频数据)分类识别与回归拟合模型的建立、代码自动生成与运行

3、利用ChatGPT4实现遥感图像目标检测、地物分类及语义分割模型的建立、代码自动生成与运行

4、利用ChatGPT4实现大气污染物预测模型的建立、代码自动生成与运行

5、利用ChatGPT4实现自然语言处理模型的建立、代码自动生成与运行
第十五ChatGPT 4 助力深度学习模型可解释性与可视化方法​​​​​​​

1、什么是模型可解释性?为什么需要对深度学习模型进行解释?

2、常用的可视化方法有哪些(特征图可视化、卷积核可视化、类别激活可视化等)?

3、类激活映射CAM(Class Activation Mapping)、梯度类激活映射GRAD-CAM、局部可解释模型-敏感LIME(Local Interpretable Model-agnostic Explanation)、等方法原理讲解

4、t-SNE的基本概念及使用t-SNE可视化深度学习模型的高维特征

5、深度学习模型可解释性与可视化中的ChatGPT提示词库讲解

6、利用ChatGPT4 及插件实现深度学习模型可视化的代码自动生成与运行​​​​​​​
第十六ChatGPT 4助力AI绘图技术​​​​​​​

1、生成式模型简介(生成式对抗网络、变分自编码器、扩散模型等)

2、利用ChatGPT4 DALL.E 3生成图像(下载图像、3种不同分辨率、修改图像)
 

3、ChatGPT4 DALL.E 3常用的提示词库(广告海报、Logo、3D模型、插画、产品包装、烹饪演示、产品外观设计、UI设计、吉祥物设计等)

4、ChatGPT4 DALL.E 3中的多种视图(正视图、后视图、侧视图、四分之三视图、鸟瞰视图、全景视图、第一人称视角、分割视图、截面视图等)

5、ChatGPT4 DALL.E 3中的多种光效(电致发光、化学发光、生物荧光、极光闪耀、全息光等)

6、ChatGPT4 DALL.E 3格子布局与角色一致性的实现

7、ChatGPT4 DALL.E 3生成动图GIF

8、Midjourney工具使用讲解

9、Stable Diffusion工具使用
第十七GPT 4 API接口调用与完整项目开发​​​​​​​

1、GPT模型API接口的调用方法(API Key的申请、API Key接口调用方法与参数说明)

2、利用GPT4实现完整项目开发

(1)聊天机器人的开发

(2)利用GPT API和Text Embedding生成文本的特征向量

(3)构建基于多模态(语音、文本、图像)的阿尔茨海默病早期筛查程序

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/821610.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

python生成二维码

要在Python中生成二维码,可以使用第三方库qrcode。首先,确保已经安装了qrcode库: pip install qrcode然后,使用以下代码生成二维码: import qrcodedata "https://mp.csdn.net/mp_blog/creation/editor?spm100…

Kafka服务端(含Zookeeper)一键自启软件

1. 前言 本文介绍了一款集成图形化界面配置和一键自启功能的Kafka与Zookeeper服务管理软件。该软件通过直观易用的图形界面,使用户能够轻松完成Kafka和Zookeeper的配置工作,有效避免了手动编辑配置文件可能带来的错误和不便。同时,软件还提供…

【附gpt4.0升级秘笈】百度智能云万源全新一代智能计算操作系统发布:引领AI新纪元

在科技日新月异的今天,人工智能(AI)作为引领未来发展的关键技术,正逐步渗透到社会的每一个角落。百度,作为中国AI领域的领军企业,始终站在技术创新的前沿,不断推出引领行业的重磅产品。今日&…

论文略读:SWE-bench: Can Language Models Resolve Real-world Github Issues?

iclr 2024 oral reviewer评分 5668 现有的语言模型(LMs)的基准测试已经饱和,无法捕捉到最先进的语言模型能做什么和不能做什么的前沿。 ——>要具有挑战性的基准测试论文引入了SWE-bench 在现实软件工程环境中评估语言模型的基准测试 ​​…

使用 code-server 搭建在线的 VS Code 编辑器

文章目录 前言安装体验后记 前言 VS Code 是一个非常流行的代码编辑器,安装各种拓展下也可以当作全功能的IDE使用。VS Code本身是基于Web方案构建的,完全可以搭建服务器,然后通过浏览器访问。事实上官方就是这么设计的。现在打开任何一个Git…

【数据分享】历次人口普查数据(一普到七普)

国之情,民之意,查人口,定大计。 第七次人口普查已经结束,那么,为了方便大家把七普数据与之前的数据做对比,地理遥感生态网整理了从一普到七普人口数据,并且把第七次人口普查的数据也一并分享给…

RISC-V微架构验证

对于RISC-V处理器因其灵活性和可扩展性而受到广泛关注,但如果没有高效验证策略,错误的设计实现可能会影响RISC-V的继续推广。 在RISC-V出现之前,对于大多数半导体公司来说,处理器验证几乎成为一门屠龙之技。专业知识被浓缩到少数几…

文献速递:深度学习肝脏肿瘤诊断---基于深度学习的表型分类重新划分联合肝细胞胆管癌

Title 题目 Deep learning-based phenotyping reclassifies combined hepatocellular cholangiocarcinoma 基于深度学习的表型分类重新划分联合肝细胞胆管癌 01文献速递介绍 Primary liver cancer arises either from hepatocytic or biliary lineage cells, giving rise to…

2024中国内燃机展-北京汽车发动机零部件展

2024第二十三届中国国际内燃机与零部件展览会 由中国内燃机工业协会主办、中国机床专用技术设备有限公司、汽车工艺装备成套开发集团协办的2024中国国际内燃机及动力装备博览会(简称“动博会”)将于2024年10月11日-13日在亦创国际会展中心隆重举办。本届…

通过matlab分别对比PSO,反向学习PSO,多策略改进反向学习PSO三种优化算法

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 4.1 粒子群优化算法 (PSO) 4.2 反向学习粒子群优化算法 (OPSO) 4.3 多策略改进反向学习粒子群优化算法 (MSO-PSO) 5.完整程序 1.程序功能描述 分别对比PSO,反向学习PSO,多策略改进反向学…

为数据穿上安全的外衣——零售电商场景下的数据安全体系建设

在电子商务交易过程中,会涉及大量的个人和财务数据的传输和处理,随着电子商务的发展,数据安全风险也成为一个备受关注的问题。 而跨境电商,属于出海业务,涉及到海外不同国家的政策法规,且数据作为电商的业…

Linux内核之aligned用法实例(四十七)

简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 优质专栏:多媒…

微信小程序生成链接或二维码的对比

二维码 1.小程序样式码 获取参数直接options.xxx(参数名) 方法:微信公众平台 》工具》生成小程序二维码; 样式图:就一看就是小程序的二维码; 2.正方形二维码/链接 方法:微信公众平台》开…

5-pytorch-torch.nn.Sequential()快速搭建神经网络

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言torch.nn.Sequential()快速搭建网络法1 生成数据2 快速搭建网络3 训练、输出结果 总结 前言 本文内容还是基于4-pytorch前馈网络简单(分类&#xf…

Go 编译构建的一些细节

Go 编译构建的一些细节 发现自己竟然没有怎么认真研究过 go 的编译构建命令。 结论前置 go run 专门用来运行命令源码文件的命令,一般用来运行单个文件go build 主要是用于测试编译。编译某个包或者项目,在当前目录下生成可执行文件go install 编译并…

RabbitMQ - Spring boot 整合 RabbitMQ

一、RabbitMQ 1、RabbitMQ 使用场景 1.1、服务解耦 假设有这样一个场景, 服务A产生数据, 而服务B,C,D需要这些数据, 那么我们可以在A服务中直接调用B,C,D服务,把数据传递到下游服务即可 但是,随着我们的应用规模不断扩大,会有更多的服务需要A的数据,如果有几十甚至几百个下…

【CANN训练营】目标检测(YoloV5s)实践(Python实现)

样例介绍 使用多路离线视频流(* .mp4)作为应用程序的输入,基于YoloV5s模型对输入视频中的物体做实时检测,将推理结果信息使用imshow方式显示。 样例代码逻辑如下所示: 环境信息 CPU:Intel Xeon Gold 63…

C++11新特性系列(一)

目录 1、C11简介 2、列表的初始化 2.1 {}初始化 2.2 initializer_list 3、auto与decltype 3.1 auto 3.2 decltype 4、范围for循环 5、右值引用和移动语义 4.1 左值引用和右值引用 4.1.1 左值引用 4.1.2 右值引用 4.2 右值引用使用场景和意义 1、C11简介 C11是C语言…

高通 Android 12 源码编译aidl接口

最近在封装系统sdk接口 于是每次需要更新aidl接口 ,传统方式一般使用make update-api或者修改Android.mk文件,今天我尝试使用Android.bp修改 ,Android 10之前在Android.mk文件修改,这里不做赘述。下面开始尝试修改,其实…

InnoDB架构:磁盘篇

InnoDB架构:磁盘篇 InnoDB是MySQL数据库中默认的存储引擎,它为数据库提供了事务安全型(ACID兼容)、行级锁定和外键支持等功能。InnoDB的架构设计优化了对于读取密集和写入密集型应用的性能表现,是一个高度优化的存储系…