题目链接
Leetcode.146 LRU 缓存
mid
题目描述
请你设计并实现一个满足 LRU
(最近最少使用) 缓存 约束的数据结构。
实现 LRUCache
类:
LRUCache(int capacity)
以 正整数 作为容量 c a p a c i t y capacity capacity 初始化LRU
缓存int get(int key)
如果关键字 k e y key key 存在于缓存中,则返回关键字的值,否则返回 − 1 -1 −1 。void put(int key, int value)
如果关键字 k e y key key 已经存在,则变更其数据值 v a l u e value value ;如果不存在,则向缓存中插入该组 k e y − v a l u e key-value key−value 。如果插入操作导致关键字数量超过 c a p a c i t y capacity capacity ,则应该 逐出 最久未使用的关键字。
函数 g e t get get 和 p u t put put 必须以 O ( 1 ) O(1) O(1) 的平均时间复杂度运行。
示例:
输入
[“LRUCache”, “put”, “put”, “get”, “put”, “get”, “put”, “get”, “get”, “get”]
[[2], [1, 1], [2, 2], [1], [3, 3], [2], [4, 4], [1], [3], [4]]
输出
[null, null, null, 1, null, -1, null, -1, 3, 4]解释 LRUCache lRUCache = new LRUCache(2); lRUCache.put(1, 1); // 缓存是
{1=1} lRUCache.put(2, 2); // 缓存是 {1=1, 2=2} lRUCache.get(1); // 返回
1 lRUCache.put(3, 3); // 该操作会使得关键字 2 作废,缓存是 {1=1, 3=3}
lRUCache.get(2); // 返回 -1 (未找到) lRUCache.put(4, 4); // 该操作会使得关键字 1
作废,缓存是 {4=4, 3=3} lRUCache.get(1); // 返回 -1 (未找到) lRUCache.get(3);
// 返回 3 lRUCache.get(4); // 返回 4
提示:
- 1 ≤ c a p a c i t y ≤ 3000 1 \leq capacity \leq 3000 1≤capacity≤3000
- 0 ≤ k e y ≤ 10000 0 \leq key \leq 10000 0≤key≤10000
- 0 ≤ v a l u e ≤ 1 0 5 0 \leq value \leq 10^5 0≤value≤105
- 最多调用 2 ∗ 1 0 5 2 * 10^5 2∗105 次 g e t get get 和 p u t put put
解法:双向链表 + 哈希表
我们先设计出双向链表的节点 Node
:
struct Node{Node* prev;Node* next;int key;int val;Node(int k,int v){key = k;val = v;prev = nullptr;next = nullptr;}
};
我们开始设计链表的 API。
struct LinkedList{Node* head; //链表头节点(假)Node* tail; //链表尾节点(假)unordered_map<int,Node*> mp; //根据键值 key 获得对应的节点 nodeint size; //节点数量 , 初始为0int capacity; //链表容量,即链表最多能由几个节点,多了的节点就移除
};
每次我们通过 g e t get get 和 p u t put put 操作节点之后,我们就要将其移动到链表头部,所以我们需要一个节点 node
插入到链表头部的函数 add
:
void add(Node* node){head->next->prev = node;node->next = head->next;head->next = node;node->prev = head;
}
此外,我们需要从链表中删除指定节点 node
:
void remove(Node* node){node->prev->next = node->next;node->next->prev = node->prev;
}
当链表中的节点数量 s i z e size size 超过链表容量 c a p a c i t y capacity capacity 时 ,即 s i z e > c a p a c i t y size > capacity size>capacity。我们就需要移除尾部的节点 并且 从 m p mp mp 删除对应的 k e y key key 和 n o d e node node 的关系:
void remove(){Node* node = tail->prev; //要删除的是尾部的节点remove(node);int key = node->key;mp.erase(key);size--; //移除节点,链表节点数量 - 1
}
对于 g e t get get,如果不存在 k e y key key 对应的节点,直接返回 − 1 -1 −1;如果存在 ,返回对应节点 n o d e node node 的值,并且将 n o d e node node 提升到链表头部:
int get(int key){if(!mp.count(key)) return -1;Node* node = mp[key];int ans = node->val;//如果此时 node 已经是第一个节点了,就没必要移动了,直接返回node->valif(node == head->next) return ans;//将 node 移动到链表头部remove(node);add(node);return ans;
}
对于 p u t put put,如果存在 k e y key key 对应的节点,我们更新节点值,然后将节点移动到头部即可;如果不存在,那我们直接插入新的节点 N o d e ( k e y , v a l u e ) Node(key,value) Node(key,value),如果此时超出容量,还要移除尾部的节点:
void put(int key,int value){if(mp.count(key)){Node* node = mp[key];node->val = value;if(node == head->next) return;remove(node);add(node);return;}Node* node = new Node(key,value);mp[key] = node;add(node);size++;if(size > capacity) remove();
}
时间复杂度: O ( 1 ) O(1) O(1)
完整代码:
struct Node{Node* prev;Node* next;int key;int val;Node(int k,int v){key = k;val = v;prev = nullptr;next = nullptr;}
};struct LinkedList{Node* head;Node* tail;unordered_map<int,Node*> mp;int size;int capacity;LinkedList(int c){head = new Node(-1,-1);tail = new Node(-1,-1);head->next = tail;tail->prev = head;size = 0;capacity = c;}void put(int key,int value){if(mp.count(key)){Node* node = mp[key];node->val = value;if(node == head->next) return;remove(node);add(node);return;}Node* node = new Node(key,value);mp[key] = node;add(node);size++;if(size > capacity) remove();}int get(int key){if(!mp.count(key)) return -1;Node* node = mp[key];int ans = node->val;if(node == head->next) return ans;remove(node);add(node);return ans;}void add(Node* node){head->next->prev = node;node->next = head->next;head->next = node;node->prev = head;}void remove(){Node* node = tail->prev;remove(node);int key = node->key;mp.erase(key);size--;}void remove(Node* node){node->prev->next = node->next;node->next->prev = node->prev;}
};class LRUCache {
public:LinkedList* list;LRUCache(int capacity) {list = new LinkedList(capacity);}int get(int key) {return list->get(key);}void put(int key, int value) {list->put(key,value);}
};/*** Your LRUCache object will be instantiated and called as such:* LRUCache* obj = new LRUCache(capacity);* int param_1 = obj->get(key);* obj->put(key,value);*/