TCP详解之流量控制

TCP详解之流量控制

发送方不能无脑的发数据给接收方,要考虑接收方处理能力。

如果一直无脑的发数据给对方,但对方处理不过来,那么就会导致触发重发机制,从而导致网络流量的无端的浪费。

为了解决这种现象发生,TCP 提供一种机制可以让「发送方」根据「接收方」的实际接收能力控制发送的数据量,这就是所谓的流量控制

下面举个栗子,为了简单起见,假设以下场景:

  • 客户端是接收方,服务端是发送方
  • 假设接收窗口和发送窗口相同,都为 200
  • 假设两个设备在整个传输过程中都保持相同的窗口大小,不受外界影响

流量控制

根据上图的流量控制,说明下每个过程:

  1. 客户端向服务端发送请求数据报文。这里要说明下,本次例子是把服务端作为发送方,所以没有画出服务端的接收窗口。
  2. 服务端收到请求报文后,发送确认报文和 80 字节的数据,于是可用窗口 Usable 减少为 120 字节,同时 SND.NXT 指针也向右偏移 80 字节后,指向 321,这意味着下次发送数据的时候,序列号是 321
  3. 客户端收到 80 字节数据后,于是接收窗口往右移动 80 字节,RCV.NXT 也就指向 321,这意味着客户端期望的下一个报文的序列号是 321,接着发送确认报文给服务端。
  4. 服务端再次发送了 120 字节数据,于是可用窗口耗尽为 0,服务端无法再继续发送数据。
  5. 客户端收到 120 字节的数据后,于是接收窗口往右移动 120 字节,RCV.NXT 也就指向 441,接着发送确认报文给服务端。
  6. 服务端收到对 80 字节数据的确认报文后,SND.UNA 指针往右偏移后指向 321,于是可用窗口 Usable 增大到 80。
  7. 服务端收到对 120 字节数据的确认报文后,SND.UNA 指针往右偏移后指向 441,于是可用窗口 Usable 增大到 200。
  8. 服务端可以继续发送了,于是发送了 160 字节的数据后,SND.NXT 指向 601,于是可用窗口 Usable 减少到 40。
  9. 客户端收到 160 字节后,接收窗口往右移动了 160 字节,RCV.NXT 也就是指向了 601,接着发送确认报文给服务端。
  10. 服务端收到对 160 字节数据的确认报文后,发送窗口往右移动了 160 字节,于是 SND.UNA 指针偏移了 160 后指向 601,可用窗口 Usable 也就增大至了 200。

操作系统缓冲区与滑动窗口的关系

前面的流量控制例子,我们假定了发送窗口和接收窗口是不变的,但是实际上,发送窗口和接收窗口中所存放的字节数,都是放在操作系统内存缓冲区中的,而操作系统的缓冲区,会被操作系统调整

当应用进程没办法及时读取缓冲区的内容时,也会对我们的缓冲区造成影响。

那操作系统的缓冲区,是如何影响发送窗口和接收窗口的呢?

我们先来看看第一个例子。

当应用程序没有及时读取缓存时,发送窗口和接收窗口的变化。

考虑以下场景:

  • 客户端作为发送方,服务端作为接收方,发送窗口和接收窗口初始大小为 360
  • 服务端非常的繁忙,当收到客户端的数据时,应用层不能及时读取数据。

缓冲区的影响

根据上图的流量控制,说明下每个过程:

  1. 客户端发送 140 字节数据后,可用窗口变为 220 (360 - 140)。
  2. 服务端收到 140 字节数据,但是服务端非常繁忙,应用进程只读取了 40 个字节,还有 100 字节占用着缓冲区,于是接收窗口收缩到了 260 (360 - 100),最后发送确认信息时,将窗口大小通告给客户端。
  3. 客户端收到确认和窗口通告报文后,发送窗口减少为 260。
  4. 客户端发送 180 字节数据,此时可用窗口减少到 80。
  5. 服务端收到 180 字节数据,但是应用程序没有读取任何数据,这 180 字节直接就留在了缓冲区,于是接收窗口收缩到了 80 (260 - 180),并在发送确认信息时,通过窗口大小给客户端。
  6. 客户端收到确认和窗口通告报文后,发送窗口减少为 80。
  7. 客户端发送 80 字节数据后,可用窗口耗尽。
  8. 服务端收到 80 字节数据,但是应用程序依然没有读取任何数据,这 80 字节留在了缓冲区,于是接收窗口收缩到了 0,并在发送确认信息时,通过窗口大小给客户端。
  9. 客户端收到确认和窗口通告报文后,发送窗口减少为 0。

可见最后窗口都收缩为 0 了,也就是发生了窗口关闭。当发送方可用窗口变为 0 时,发送方实际上会定时发送窗口探测报文,以便知道接收方的窗口是否发生了改变,这个内容后面会说,这里先简单提一下。

我们先来看看第二个例子。

当服务端系统资源非常紧张的时候,操作系统可能会直接减少了接收缓冲区大小,这时应用程序又无法及时读取缓存数据,那么这时候就有严重的事情发生了,会出现数据包丢失的现象。

数据包丢失

说明下每个过程:

  1. 客户端发送 140 字节的数据,于是可用窗口减少到了 220。
  2. 服务端因为现在非常的繁忙,操作系统于是就把接收缓存减少了 120 字节,当收到 140 字节数据后,又因为应用程序没有读取任何数据,所以 140 字节留在了缓冲区中,于是接收窗口大小从 360 收缩成了 100,最后发送确认信息时,通告窗口大小给对方。
  3. 此时客户端因为还没有收到服务端的通告窗口报文,所以不知道此时接收窗口收缩成了 100,客户端只会看自己的可用窗口还有 220,所以客户端就发送了 180 字节数据,于是可用窗口减少到 40。
  4. 服务端收到了 180 字节数据时,发现数据大小超过了接收窗口的大小,于是就把数据包丢失了
  5. 客户端收到第 2 步时,服务端发送的确认报文和通告窗口报文,尝试减少发送窗口到 100,把窗口的右端向左收缩了 80,此时可用窗口的大小就会出现诡异的负值。

所以,如果发生了先减少缓存,再收缩窗口,就会出现丢包的现象。

为了防止这种情况发生,TCP 规定是不允许同时减少缓存又收缩窗口的,而是采用先收缩窗口,过段时间再减少缓存,这样就可以避免了丢包情况

窗口关闭

在前面我们都看到了,TCP 通过让接收方指明希望从发送方接收的数据大小(窗口大小)来进行流量控制。

如果窗口大小为 0 时,就会阻止发送方给接收方传递数据,直到窗口变为非 0 为止,这就是窗口关闭

窗口关闭潜在的危险

接收方向发送方通告窗口大小时,是通过 ACK 报文来通告的。

那么,当发生窗口关闭时,接收方处理完数据后,会向发送方通告一个窗口非 0 的 ACK 报文,如果这个通告窗口的 ACK 报文在网络中丢失了,那麻烦就大了。

窗口关闭潜在的危险

这会导致发送方一直等待接收方的非 0 窗口通知,接收方也一直等待发送方的数据,如不采取措施,这种相互等待的过程,会造成了死锁的现象。

TCP 是如何解决窗口关闭时,潜在的死锁现象呢?

为了解决这个问题,TCP 为每个连接设有一个持续定时器,只要 TCP 连接一方收到对方的零窗口通知,就启动持续计时器

如果持续计时器超时,就会发送窗口探测 ( Window probe ) 报文,而对方在确认这个探测报文时,给出自己现在的接收窗口大小。

窗口探测

  • 如果接收窗口仍然为 0,那么收到这个报文的一方就会重新启动持续计时器;
  • 如果接收窗口不是 0,那么死锁的局面就可以被打破了。

窗口探测的次数一般为 3 次,每次大约 30-60 秒(不同的实现可能会不一样)。如果 3 次过后接收窗口还是 0 的话,有的 TCP 实现就会发 RST 报文来中断连接。

糊涂窗口综合症

如果接收方太忙了,来不及取走接收窗口里的数据,那么就会导致发送方的发送窗口越来越小。

到最后,如果接收方腾出几个字节并告诉发送方现在有几个字节的窗口,而发送方会义无反顾地发送这几个字节,这就是糊涂窗口综合症

要知道,我们的 TCP + IP 头有 40 个字节,为了传输那几个字节的数据,要搭上这么大的开销,这太不经济了。

就好像一个可以承载 50 人的大巴车,每次来了一两个人,就直接发车。除非家里有矿的大巴司机,才敢这样玩,不然迟早破产。要解决这个问题也不难,大巴司机等乘客数量超过了 25 个,才认定可以发车。

现举个糊涂窗口综合症的栗子,考虑以下场景:

接收方的窗口大小是 360 字节,但接收方由于某些原因陷入困境,假设接收方的应用层读取的能力如下:

  • 接收方每接收 3 个字节,应用程序就只能从缓冲区中读取 1 个字节的数据;
  • 在下一个发送方的 TCP 段到达之前,应用程序还从缓冲区中读取了 40 个额外的字节;

糊涂窗口综合症

每个过程的窗口大小的变化,在图中都描述的很清楚了,可以发现窗口不断减少了,并且发送的数据都是比较小的了。

所以,糊涂窗口综合症的现象是可以发生在发送方和接收方:

  • 接收方可以通告一个小的窗口
  • 而发送方可以发送小数据

于是,要解决糊涂窗口综合症,就要同时解决上面两个问题就可以了:

  • 让接收方不通告小窗口给发送方
  • 让发送方避免发送小数据

怎么让接收方不通告小窗口呢?

接收方通常的策略如下:

当「窗口大小」小于 min( MSS,缓存空间/2 ) ,也就是小于 MSS 与 1/2 缓存大小中的最小值时,就会向发送方通告窗口为 0,也就阻止了发送方再发数据过来。

等到接收方处理了一些数据后,窗口大小 >= MSS,或者接收方缓存空间有一半可以使用,就可以把窗口打开让发送方发送数据过来。

怎么让发送方避免发送小数据呢?

发送方通常的策略如下:

使用 Nagle 算法,该算法的思路是延时处理,只有满足下面两个条件中的任意一个条件,才可以发送数据:

  • 条件一:要等到窗口大小 >= MSS 并且 数据大小 >= MSS
  • 条件二:收到之前发送数据的 ack 回包;

只要上面两个条件都不满足,发送方一直在囤积数据,直到满足上面的发送条件。

Nagle 伪代码如下:

if 有数据要发送 {if 可用窗口大小 >= MSS and 可发送的数据 >= MSS {立刻发送MSS大小的数据} else {if 有未确认的数据 {将数据放入缓存等待接收ACK} else {立刻发送数据}}
}

注意,如果接收方不能满足「不通告小窗口给发送方」,那么即使开了 Nagle 算法,也无法避免糊涂窗口综合症,因为如果对端 ACK 回复很快的话(达到 Nagle 算法的条件二),Nagle 算法就不会拼接太多的数据包,这种情况下依然会有小数据包的传输,网络总体的利用率依然很低。

所以,接收方得满足「不通告小窗口给发送方」+ 发送方开启 Nagle 算法,才能避免糊涂窗口综合症

另外,Nagle 算法默认是打开的,如果对于一些需要小数据包交互的场景的程序,比如,telnet 或 ssh 这样的交互性比较强的程序,则需要关闭 Nagle 算法。

可以在 Socket 设置 TCP_NODELAY 选项来关闭这个算法(关闭 Nagle 算法没有全局参数,需要根据每个应用自己的特点来关闭)

setsockopt(sock_fd, IPPROTO_TCP, TCP_NODELAY, (char *)&value, sizeof(int));

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/82016.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

一个方法用js生成随机双色球、大乐透

代码如下&#xff1a; <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title><s…

网络安全深入学习第六课——热门框架漏洞(RCE— Weblogic反序列化漏洞)

文章目录 一、Weblogic介绍二、Weblogic反序列化漏洞历史三、Weblogic框架特征1、404界面2、登录界面 四、weblogic常用弱口令账号密码五、Weblogic漏洞介绍六、Weblogic漏洞手工复现1、获取账号密码&#xff0c;这是一个任意文件读取的漏洞1&#xff09;读取SerializedSystemI…

MySQL性能优化——MYSQL执行流程

MySQL 执行流程1-5如下图。 MySQL 的架构共分为两层&#xff1a;Server 层和存储引擎层&#xff0c; Server 层负责建立连接、分析和执行 SQL。MySQL 大多数的核心功能模块都在这实现&#xff0c;主要包括连接器&#xff0c;查询缓存、解析器、预处理器、优化器、执行器等。…

【C刷题训练营】第四讲(打好基础很重要)

前言: 大家好&#xff0c;这是c语言刷题训练营的第四讲&#xff0c;打好基础便于对c语言语法与算法思维的提高&#xff0c;感谢你的来访与支持&#xff01; &#x1f4a5;&#x1f388;个人主页:​​​​​​Dream_Chaser&#xff5e; &#x1f388;&#x1f4a5; ✨✨刷题专栏…

操作系统基本概念

目录 一、基本概述 二、操作系统的特点 &#xff08;一&#xff09;并发性&#xff08;实质是微观的串行、宏观的并行&#xff09; 1. 对比看&#xff1a;并行性 2. 单核CPU和多核CPU &#xff08;二&#xff09;共享性 &#xff08;三&#xff09;虚拟性 &#xff08;…

升级OpenSSL并进行编译安装

Packaging (OpenSSL)组件存在安全漏洞的原因是由于当前爆出的Openssl漏洞。 这个漏洞可能会导致泄露隐私信息&#xff0c;并且涉及的机器和环境也有所不同&#xff0c;因此修复方案也会有所不同。 目前&#xff0c;一些服务器使用的Nginx是静态编译OpenSSL&#xff0c;直接将Op…

2023陇剑杯

2023陇剑杯初赛WP HW hard_web_1 ​ 首先判断哪个是服务器地址 ​ 从响应包看&#xff0c;给客户端返回数据包的就是服务器 所以确定服务器地址是192.168.162.188​ 再从开放端口来看&#xff0c;长期开放的端口 客户端发送一个TCP SYN包&#xff08;同步请求&#xff…

记一次线上BUG排查过程

1. 线上遇到一个非常奇怪的bug&#xff0c;为一个用户分配业务线类型后&#xff0c;该用户登录时&#xff0c;提示502&#xff0c;但其它的用户登录完全是正常的 2. 问题现象 3. 排查思路 先去看线上日志&#xff0c;看是否有error&#xff0c;但日志里边这个接口200正常返回…

Django系列:Django的项目结构与配置解析

Django系列 Django的项目结构与配置解析 作者&#xff1a;李俊才 &#xff08;jcLee95&#xff09;&#xff1a;https://blog.csdn.net/qq_28550263 邮箱 &#xff1a;291148484163.com 本文地址&#xff1a;https://blog.csdn.net/qq_28550263/article/details/132893616 【介…

Nginx配置最佳实践

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f984; 博客首页——&#x1f405;&#x1f43e;猫头虎的博客&#x1f390; &#x1f433; 《面试题大全专栏》 &#x1f995; 文章图文…

2023/9/18 -- C++/QT

作业 完善登录框 点击登录按钮后&#xff0c;判断账号&#xff08;admin&#xff09;和密码&#xff08;123456&#xff09;是否一致&#xff0c;如果匹配失败&#xff0c;则弹出错误对话框&#xff0c;文本内容“账号密码不匹配&#xff0c;是否重新登录”&#xff0c;给定两…

【论文阅读 05】图像异常检测研究现状综述

1 图像异常检测任务 图像异常检测任务根据异常的形态可以分为定性异常的分类和定量异常的定位两个类别. 定性异常的分类&#xff1a;整体地给出是否异常的判断&#xff0c;无需准确定位异常的位置。 如图2左上图所示, 左侧代表正常图像, 右侧代表异常图像, 在第1行中,模…

企业电子招投标采购系统源码——功能模块功能描述+数字化采购管理 采购招投标

功能描述 1、门户管理&#xff1a;所有用户可在门户页面查看所有的公告信息及相关的通知信息。主要板块包含&#xff1a;招标公告、非招标公告、系统通知、政策法规。 2、立项管理&#xff1a;企业用户可对需要采购的项目进行立项申请&#xff0c;并提交审批&#xff0c;查看所…

国家高新技术企业认定六个必要条件详细解读!

相信很多企业都想认定高新技术企业&#xff0c;因为认定成功的高新技术企业&#xff0c;可以享受很多政府资助政策&#xff0c;为公司创造很多便利条件。 但是&#xff0c;很多企业对于高企认定的条件却比较迷糊&#xff0c;今天至善科技为大家解读一下国家高新技术企业认定的六…

Maven 安装配置

Maven 安装配置 文章目录 Maven 安装配置一、下载 Maven二、解压Maven核心程序三、指定本地仓库四、配置阿里云镜像仓库4.1 将原有的例子配置注释掉4.2 加入新的配置 五、配置 Maven 工程的基础 JDK 版本六、配置环境变量6.1 检查 JAVAHOME 配置是否正确6.2 配置 MAVENHOME6.3 …

node 之 express 框架(初级)

一、express 热更新 1、安装扩展 npm install node-dev -D2、在根目录下的 package.json 文件中进行配置 3、之后的启动执行下面的命令即可 npm run dev二、mvc中的 模板引擎 1、ejs模板引擎的安装 npm install ejs -s2、在根目录下的app.js文件中配置 app.set(view engin…

第21章_瑞萨MCU零基础入门系列教程之事件链接控制器ELC

本教程基于韦东山百问网出的 DShanMCU-RA6M5开发板 进行编写&#xff0c;需要的同学可以在这里获取&#xff1a; https://item.taobao.com/item.htm?id728461040949 配套资料获取&#xff1a;https://renesas-docs.100ask.net 瑞萨MCU零基础入门系列教程汇总&#xff1a; ht…

腾讯mini项目-【指标监控服务重构】2023-08-16

今日已办 v1 验证 StageHandler 在处理消息时是否为单例&#xff0c;【错误尝试】 type StageHandler struct { }func (s StageHandler) Middleware1(h message.HandlerFunc) message.HandlerFunc {return func(msg *message.Message) ([]*message.Message, error) {log.Log…

沈阳建筑大学《乡村振兴战略下传统村落文化旅游设计》 许少辉八一著作

沈阳建筑大学《乡村振兴战略下传统村落文化旅游设计》 许少辉八一著作

怎么推广自己抖店的商品?最适合0经验新手操作的办法,来看看

我是王路飞。 抖店开通后&#xff0c;想要把自己店铺的商品卖出去&#xff0c;就需要进行推广了。 但是怎么推广呢&#xff1f; 要么利用抖音的搜索和推荐流量&#xff0c;获取曝光&#xff0c;实现点击和转化。 不过这种玩法有个弊端&#xff0c;就是需要你有一定的电商经…