开源模型应用落地-chatglm3-6b-批量推理-入门篇(四)

一、前言

     刚开始接触AI时,您可能会感到困惑,因为面对众多开源模型的选择,不知道应该选择哪个模型,也不知道如何调用最基本的模型。但是不用担心,我将陪伴您一起逐步入门,解决这些问题。

     在信息时代,我们可以轻松地通过互联网获取大量的理论知识和概念。然而,仅仅掌握理论知识并不能真正帮助我们成长和进步。实践是将理论知识转化为实际技能和经验的关键。

    本章将学习如何在低成本下,连续批处理提升LLM推理吞吐量,同时减少延迟。


二、术语

2.1. 批量推理

    一次加载模型参数,然后使用它们来处理多个输入序列。这可以更有效地使用芯片的内存带宽,从而实现更高的计算利用率、更高的吞吐量和更低的 LLM 推理成本。


三、前置条件

3.1. windows or linux操作系统均可

3.2. 下载chatglm3-6b模型

从huggingface下载:https://huggingface.co/THUDM/chatglm3-6b/tree/main

从魔搭下载:魔搭社区汇聚各领域最先进的机器学习模型,提供模型探索体验、推理、训练、部署和应用的一站式服务。https://www.modelscope.cn/models/ZhipuAI/chatglm3-6b/fileshttps://www.modelscope.cn/models/ZhipuAI/chatglm3-6b/files

 3.3. 创建虚拟环境&安装依赖

conda create --name chatglm3 python=3.10
conda activate chatglm3
pip install protobuf transformers==4.39.3 cpm_kernels torch>=2.0 sentencepiece accelerate

四、技术实现

4.1. 完整代码

# -*-  coding = utf-8 -*-
from typing import Optional, Union
from transformers import AutoTokenizer, LogitsProcessorList, AutoModelForCausalLMmodelPath = "/mnt1/model/chatglm3-6b"def batch(prompts: Union[str, list[str]],max_length: int = 8192,num_beams: int = 1,do_sample: bool = True,top_p: float = 0.8,temperature: float = 0.8,
):tokenizer.encode_special_tokens = Trueif isinstance(prompts, str):prompts = [prompts]batched_inputs = tokenizer(prompts, return_tensors="pt", padding="longest")print(batched_inputs)batched_inputs = batched_inputs.to(model.device)gen_kwargs = {"max_length": max_length,"num_beams": num_beams,"do_sample": do_sample,"top_p": top_p,"temperature": temperature,}batched_outputs = model.generate(**batched_inputs, **gen_kwargs)batched_response = []for input_ids, output_ids in zip(batched_inputs.input_ids, batched_outputs):decoded_text = tokenizer.decode(output_ids[len(input_ids):])batched_response.append(decoded_text.strip())return batched_responsedef main(batch_queries):gen_kwargs = {"max_length": 8192,"do_sample": True,"top_p": 0.9,"temperature": 0.45,"num_beams": 1,}batch_responses = batch( batch_queries, **gen_kwargs)return batch_responsesdef loadTokenizer():tokenizer = AutoTokenizer.from_pretrained(modelPath, use_fast=False, trust_remote_code=True)return tokenizerdef loadModel():model = AutoModelForCausalLM.from_pretrained(modelPath, device_map="auto", trust_remote_code=True).cuda()model = model.eval()# print(model)return modelif __name__ == "__main__":model = loadModel()tokenizer = loadTokenizer()batch_queries = ["<|user|>\n广州有什么特产\n<|assistant|>","<|user|>\n东莞有什么特产\n<|assistant|>","<|user|>\n韶关有什么景点\n<|assistant|>","<|user|>\n深圳有什么景点\n<|assistant|>",]batch_responses = main(batch_queries)for response in batch_responses:print("=" * 10)print(response)

调用结果:

通过表格展示模型生成结果:

序号userassistant
1<|user|>\n广州有什么特产\n<|assistant|>广州作为我国南方的大城市,拥有丰富的特产。以下是一些著名的广州特产:1. 广式早茶:广州的早茶文化悠久,品种丰富,如虾饺、烧卖、肠粉、凤爪等。2. 广式点心:有蛋挞、莲蓉包、马蹄糕、糯米鸡等。3. 广式糖水:如红豆糖水、绿豆糖水、莲子糖水等。4. 广式奶茶:在华南地区非常受欢迎,以香浓为特点。5. 广式水果:如荔枝、菠萝包、木瓜、火龙果等。6. 广式美食:如叉烧包、烧鹅、白切鸡、梅菜扣肉等。7. 广式糖果:如鱼翅糖、虫草花糖、六仔糖等。8. 广式茶叶:如铁观音、普洱茶、广州花茶等。9. 广式凉菜:如凉拌海蜇、蒜泥白肉、夫妻肺片等。10. 广式糕点:如绿豆糕、芝麻饼、蛋黄酥等。这些特产可以在广州的各大商场、购物中心、特产店以及一些大型超市购买到。同时,您也可以通过网购平台购买到广州特产。
2<|user|>\n东莞有什么特产\n<|assistant|>东莞是中国广东省的一个城市,拥有丰富的文化和历史,同时也是一个著名的制造业中心。因此,东莞的特产主要包括各种手工艺品、家具、电子设备等工业产品。此外,东莞还有一些美食和特色小吃,如烧腊、糖水、糯米鸡等。
3<|user|>\n韶关有什么景点\n<|assistant|>韶关是中国广东省的一个地级市,拥有丰富的旅游资源,包括以下景点:1. 韶关市博物馆:韶关市博物馆是一座以韶关历史文化为主要展示内容的博物馆,展示了韶关的历史、文化、艺术和社会风俗等方面的内容。2. 韶关市人民广场:韶关市人民广场是韶关市中心的一个公共广场,是韶关市民休闲、娱乐和活动的重要场所。3. 韶关市第一中学:韶关市第一中学是韶关市的一所重点中学,有着悠久的历史和优良的教育传统。4. 韶关市皮肤病医院:韶关市皮肤病医院是一家专业治疗皮肤病的医院,提供各种皮肤病的诊断和治疗服务。5. 韶关市皮肤病医院附近的中山公园:中山公园是韶关市皮肤病医院附近的一个公共公园,提供休闲、娱乐和活动场所。6. 韶关市韶州古城:韶州古城是韶关市的一个历史悠久的古城,有着丰富的历史文化遗产。7. 韶关市乳源瑶族自治县:韶关市乳源瑶族自治县是韶关市下辖的一个瑶族自治县,有着独特的瑶族文化和风情。8. 韶关市乳源瑶族自治县的大王峰景区:大王峰景区是乳源瑶族自治县的一个风景名胜区,有着壮丽的山水和独特的瑶族文化。9. 韶关市乳源瑶族自治县的大王峰景区附近的大王寺:大王寺是大王峰景区附近的一座古寺,有着悠久的历史和独特的文化底蕴。10. 韶关市乳源瑶族自治县的大王峰景区附近的瑶族风情村:瑶族风情村是乳源瑶族自治县的一个民俗文化村,展示了瑶族的风俗、习惯和传统文化。
4<|user|>\n深圳有什么景点\n<|assistant|>深圳是一个充满活力和创新精神的城市,拥有许多著名的旅游景点,以下是一些值得一游的景点:1. 深圳世界之窗:集世界各地著名景观和建筑于一身的大型主题公园,游客可以在一天之内领略世界各地的文化和风光。2. 深圳欢乐谷:是一个集休闲、娱乐、度假为一体的大型主题公园,拥有刺激的过山车、海盗船等游乐设施。3. 深圳大梅沙海滨公园:是深圳著名的海滨度假胜地,拥有优美的沙滩和清澈的海水,适合度假、海滨游玩。4. 深圳莲花山公园:位于深圳市中心,是一个城市绿洲,拥有美丽的莲花山和各种雕塑、喷泉等景观。5. 深圳锦绣中华民俗村:是一个大型的民俗文化主题公园,游客可以领略到中国各地的传统民俗文化、建筑和表演。6. 深圳东部华侨城:包括大梅沙海滨公园、茶溪谷、生态广场等多个景区,游客可以欣赏自然风光、品尝美食、观赏表演等。7. 深圳华侨城创意园:是一个以创意为主题的公园,拥有独特的建筑和景观,适合拍照、休闲和创意产业相关的活动。8. 深圳深圳湾公园:是一个位于深圳湾的公园,可以欣赏到深圳湾跨海大桥的美丽景色和深圳湾公园的美景。9. 深圳香蜜湖公园:是一个美丽的城市湖泊公园,适合散步、骑车、划船等户外活动。10. 深圳东部华侨城中华民俗村:是一个大型的民俗文化主题公园,游客可以领略到中国各地的传统民俗文化、建筑和表演。以上只是深圳众多景点中的一部分,实际上深圳还有很多其他值得一游的景点,如深圳水围村、深圳东部华侨城茶溪谷、深圳大梅沙水上世界等。


五、附带说明

5.1. 批量推理的输入序列格式

  1. "<|user|>\n广州有什么特产\n<|assistant|>"
  2. "<|user|>\n东莞有什么特产\n<|assistant|>"
  3. "<|user|>\n韶关有什么景点\n<|assistant|>"
  4. "<|user|>\n深圳有什么景点\n<|assistant|>"

上述prompts经过tokenizer处理后:

{'input_ids': tensor([[    0, 64790, 64792, 64795, 30910,    13, 32528, 33277, 45645,    13,	64796],[    0, 64790, 64792, 64795, 30910,    13, 36705, 33277, 45645,    13,	64796],[64790, 64792, 64795, 30910,    13, 57712, 54637, 33277, 35180,    13,	64796],[    0, 64790, 64792, 64795, 30910,    13, 32370, 33277, 35180,    13,	64796]]), 
'attention_mask': tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]), 
'position_ids': tensor([[ 0,  0,  1,  2,  3,  4,  5,  6,  7,  8,  9],[ 0,  0,  1,  2,  3,  4,  5,  6,  7,  8,  9],[ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10],[ 0,  0,  1,  2,  3,  4,  5,  6,  7,  8,  9]])}

5.2. 生成结果多样性

    上面示例生成的结果受到模型参数的影响,可以通过调整temperature值来改变结果的多样性和随机性。较低的temperature值会使生成的结果更加确定和保守,更加倾向于选择高概率的预测。而较高的temperature值会使生成的结果更加多样化和随机,更容易选择低概率的预测。所以,通过调整temperature值,可以控制生成结果的风格和变化程度。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/819277.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Normalizing Flows

需要学的是神经网络 f f f, 用于完成从source distribution (Pz)&#xff08;latent space&#xff0c;一般为高斯分布&#xff09;到 target distribution (Px) 的映射。 Normalizing Flows 是一种强大的生成模型&#xff0c;它通过学习一个可逆且易于计算的转换来将复杂的概…

Maven 总结

文章目录 第一章 Maven概述第一节 为什么要学习Maven&#xff1f;1、从『构建』角度解释①个人开发流程②团队开发流程 2、从『依赖』角度解释①jar包的规模②jar包的来源③jar包之间的依赖关系 第二节 What&#xff1f;什么是Maven&#xff1f;第二节 什么是Maven&#xff1f;…

FANUC机器人单轴零点标定的具体方法(全轴零点标定不方便时可采用)

FANUC机器人单轴零点标定的具体方法(全轴零点标定不方便时可采用) 前面和大家分享了FANUC机器人进行零点标定的原因和方法,具体可参考以下链接中的内容:: FANUC机器人进行零点标定的目的和具体方法步骤详解

封装原生html的table处理方法【参数类似eltable】

直接跑html即可 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>封装原生talbe</title> </…

Centos7下docker的jenkins配置启动vue、springboot生产环境

个人记录 上篇 Centos7下docker安装jenkins / Gitee上传私有仓库 安装插件 新建任务 多分支流水线 任务名称&#xff1a;ks-springboot&#xff08;后端&#xff09;/ ks-vue3&#xff08;前端&#xff09; 分支源 增加源&#xff1a;Git gitee复制git链接 https://g…

ECMA进阶1之从0~1搭建react同构体系项目1

ECMA进阶 ES6项目实战前期介绍SSRpnpm 包管理工具package.json 项目搭建初始化配置引入encode-fe-lint 基础环境的配置修改package.jsonbabel相关tsconfig相关postcss相关补充scripts脚本webpack配置base.config.tsclient.config.tsserver.config.ts src环境server端&#xff1…

简单的车牌号识别

目录 处理流程与界面各接口编写时遇到的一些问题上传图片识别结果标签显示中文 处理流程与界面 首先点击“上传图片”按钮&#xff0c;可以选择文件夹中含有汽车车牌的图片&#xff0c;并显示在“图片框”中。 点击“检测车牌”按钮&#xff0c;会先对“图片框”中即含有汽车车…

解析数据科学,探索ChatGPT背后的奥秘

在当今这个由数据驱动和AI蓬勃发展的时代&#xff0c;数据科学作为一门融合多种学科的综合性领域&#xff0c;对于推动各行各业实现数字化转型升级起着至关重要的作用。近年来&#xff0c;大语言模型技术发展态势强劲&#xff0c;为数据科学的进步做出了巨大贡献。其中&#xf…

高效解决Visual Studio Code中文乱码问题

文章目录 问题解决步骤 问题 Visual Studio Code新建一个文件编码方式总是默认GBK&#xff0c;如果我不修改成默认UTF-8&#xff0c;那么每次运行&#xff0c;如果有中文需要输出就会乱码&#xff01; 解决步骤 之后我会持续更新&#xff0c;如果喜欢我的文章&#xff0c;请记…

OpenCV基本图像处理操作(一)——图像基本操作与形态学操作

环境配置地址 图像显示 import cv2 #opencv读取的格式是BGR import numpy as np import matplotlib.pyplot as plt#Matplotlib是RGB imgcv2.imread(cat.jpg) img_gray cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) img_gray.shape cv2.imshow("img_gray", img_gray) cv2…

基于WOA优化的CNN-LSTM-Attention的时间序列回归预测matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 4.1卷积神经网络&#xff08;CNN&#xff09;在时间序列中的应用 4.2 长短时记忆网络&#xff08;LSTM&#xff09;处理序列依赖关系 4.3 注意力机制&#xff08;Attention&#xff09; 4…

【机器学习300问】69、为什么深层神经网络比浅层要好用?

要回答这个问题&#xff0c;首先得知道神经网络都在计算些什么东西&#xff1f;之前我在迁移学习的文章中稍有提到&#xff0c;跳转链接在下面&#xff1a; 为什么其他任务预训练的模型参数&#xff0c;可以在我这个任务上起作用&#xff1f;http://t.csdnimg.cn/FVAV8 …

Elasticsearch数据写入、检索流程及底层原理全方位解析

码到三十五 &#xff1a; 个人主页 心中有诗画&#xff0c;指尖舞代码&#xff0c;目光览世界&#xff0c;步履越千山&#xff0c;人间尽值得 ! 目录 ✍&#x1f3fb;序言✍&#x1f3fb;1️⃣✍&#x1f3fb;es的架构简介1. 分布式架构2. 索引与搜索3. 数据写入与持久化4. 缓…

C#值类型和引用类型、赋值、区别、相同点

C#值类型和引用类型 **前言&#xff1a;**在C#中变量分为以下几种类型&#xff1a;值类型&#xff08;Value Types&#xff09;,引用类型&#xff08;Reference Types&#xff09;,指针类型&#xff08;Pointer Types&#xff09;;指针类型&#xff08;变量存储另一种类型变量…

如何做信创测试

信创测试是一种系统化的方法&#xff0c;旨在评估和验证创意和创新项目的潜力和可行性。进行信创测试可以帮助企业在投入大量资源之前&#xff0c;对创意进行客观、科学的评估&#xff0c;以减少失败的风险并最大化成功的可能性。以下是一般性的信创测试步骤&#xff1a; 确定…

用 LLaMA-Factory 在魔搭微调千问

今天在魔搭上把千问调优跑通了&#xff0c;训练模型现在在 Mac 还不支持&#xff0c;需要用 N 卡才可以&#xff0c;只能弄个N 卡的机器&#xff0c;或者买个云服务器。魔搭可以用几十个小时&#xff0c;但是不太稳定&#xff0c;有的时候会自动停止。 注册账号 直接手机号注…

自然语言处理: 第二十七章LLM训练超参数

前言: LLM微调的超参大致有如下内容,在本文中&#xff0c;我们针对这些参数进行解释 training_arguments TrainingArguments(output_dir"./results",per_device_train_batch_size4,per_device_eval_batch_size4,gradient_accumulation_steps2,optim"adamw_8bi…

【无人机/平衡车/机器人】详解STM32+MPU6050姿态解算—卡尔曼滤波+四元数法+互补滤波(文末附3个算法源码)

效果: MPU6050姿态解算-卡尔曼滤波+四元数+互补滤波 目录 基础知识详解 欧拉角

OpenCV基本图像处理操作(五)——图像数据操作

数据读取 cv2.IMREAD_COLOR&#xff1a;彩色图像cv2.IMREAD_GRAYSCALE&#xff1a;灰度图像 import cv2 #opencv读取的格式是BGR import matplotlib.pyplot as plt import numpy as np %matplotlib inline imgcv2.imread(cat.jpg)数据显示 #图像的显示,也可以创建多个窗口 c…

力扣练习题(2024/4/15)

1打家劫舍 你是一个专业的小偷&#xff0c;计划偷窃沿街的房屋。每间房内都藏有一定的现金&#xff0c;影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统&#xff0c;如果两间相邻的房屋在同一晚上被小偷闯入&#xff0c;系统会自动报警。 给定一个代表每个房屋…