性能再升级!UNet+注意力机制,新SOTA分割准确率高达99%

UNet结合注意力机制能够有效提升图像分割任务的性能。

具体来说,通过将注意力模块集成到UNet的架构中,动态地重新分配网络的焦点,让其更集中在图像中对于分割任务关键的部分。这样UNet可以更有效地利用其跳跃连接特性,以精细的局部化信息来提升分割精度。

这种策略可以帮助UNet更精确地界定目标边界,提升分割精度和效率。同时引导网络关注更有信息量的局部区域,减少模型对计算资源的需求

以CAS-UNet算法为例: CAS-UNet是一种基于注意机制的视网膜血管分割算法,它通过引入跨融合通道注意机制、加性注意门模块和SoftPool池化模块,改进了传统的U-Net算法,提高了模型的分割能力和对细节图像区域的分割效果。

在CHASEDB1和DRIVE数据集上的实验结果表明,CAS-UNet分别达到了96.68%和95.86%的准确率,以及83.21%和83.75%的灵敏度,优于现有的基于U-Net的经典算法。

本文挑选了12个UNet结合注意力机制最新成果,可借鉴的方法和创新点做了简单提炼,原文以及相应代码都整理了,方便同学们学习和复现。

论文和开源代码需要的同学看文末

High-Resolution Model for Segmenting and Predicting Brain Tumor Based on Deep UNet with Multi Attention Mechanism

方法:论文提出了一种利用增强注意机制的UNet框架分割脑肿瘤的新技术。通过在记录全面的上下文信息的同时,通过选择性地强调重要方面的注意过程,该策略克服了脑肿瘤分割的挑战。在总体准确率方面表现出色,达到了99%的准确率。

创新点:

  • 建立了一种基于UNet和多重注意机制的深度学习模型,用于精确分割和预测脑肿瘤。该模型通过在UNet架构中整合注意机制来强化特征提取和上下文理解,从而克服了传统分割技术的局限性。

  • 通过引入空间注意和通道注意机制,提高了模型对肿瘤和非肿瘤区域的区分能力,并加强了对多尺度层次的上下文理解。

  • 利用离散余弦变换(DCT)从医学图像中提取特征,降低了计算复杂度和内存需求。这有助于减少UNet模型的输入数组维度。

DA-TransUNet: Integrating Spatial and Channel Dual Attention with Transformer U-Net for Medical Image Segmentation

方法:论文提出一种新的深度医学图像分割框架DA-TransUNet,旨在将Transformer和双注意力块(DA-Block)与传统的U-shaped架构相结合,以改善医学图像分割的性能。通过在嵌入层和每个跳跃连接层中引入DA-Block,提高特征提取能力和编码器-解码器结构的效率,从而改善医学图像分割的性能。

创新点:

  • DA-TransUNet:将双重注意机制集成到Transformer U-net框架中,将位置和通道信息处理与编码器-解码器结构相结合,提高了医学图像分割任务的性能。

  • 双重注意块(DA-Block):在编码器的Transformer层之前和跳跃连接中引入了DA-Block,增强了特征提取能力,改善了图像分割性能。

SCTV-UNet: a COVID-19 CT segmentation network based on attention mechanism

方法:论文提出了一种新的COVID-19分割网络SCTV-UNet,结合了编码器上的注意力机制。同时,还提出了一种新的复合损失函数DTVLoss,可以解决传统U型网络预测图像边界模糊和病变区域与背景之间对比度弱的问题。

创新点:

  • 提出了一种新的COVID-19分割网络SCTV-UNet,结合了编码器上的注意机制。通过引入SC注意力到编码器中,可以捕获更多的语义信息,突出病变区域的特征,并抑制其他区域。因此,SCTV-UNet比TV-UNet有更好的分割效果和分割准确性。

  • 提出了一种新的复合损失函数DTVLoss。它可以解决传统U型网络预测图像边界模糊和病变区域与背景之间对比度弱的问题。通过将DTVLoss替换TVLoss,可以解决TV-UNet预测图像中边界模糊和病变区域与背景之间对比度弱的问题。

Road Extraction From Satellite Images Using Attention-Assisted UNet

方法:作者采用了UNet模型,并在解码器部分辅助使用了注意力机制,同时使用了经过补丁、旋转和增强的数据集进行训练。预处理步骤包括图像和掩模的补丁化、旋转、排除仅包含背景的图像以及排除道路面积很小的图像。

为了解决数据集固有的偏差问题,预处理中采用了补丁化和背景排除技术,模型中采用了注意力机制。通过这些技术的组合,提出的模型在遥感图像分割方面取得了98.33%的准确率。

创新点:

  • 使用UNet和注意力机制在模型中,通过数据准备、背景排除和旋转等预处理步骤,克服了数据集偏差问题并实现了更好的性能。

  • 在结果分析步骤中,重点关注精确度和召回率,以更好地评估性能并找出应考虑的缺点。

关注下方《学姐带你玩AI》🚀🚀🚀

回复“UNet结合”获取全部论文+代码

码字不易,欢迎大家点赞评论收藏

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/818002.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

VMware安装Linux虚拟机(rocky9)

软件准备: VMware虚拟机ISO系统镜像文件 选择创建虚拟机→典型→下一步→点击稍后安装操作系统 选择Linux系统和对应版本 输入虚拟机名称和选择保存位置 设置磁盘大小 根据需要自定义硬件配置→完成 然后点击编辑虚拟机设置→CD/DVD→选择ISO镜像 然后开启虚拟机→…

动态规划|343.整数拆分

力扣题目链接 class Solution { public:int integerBreak(int n) {vector<int> dp(n 1);dp[2] 1;for (int i 3; i < n ; i) {for (int j 1; j < i / 2; j) {dp[i] max(dp[i], max((i - j) * j, dp[i - j] * j));}}return dp[n];} }; 思路 看到这道题目&…

【GD32】 2.39 FR1002人脸识别模块

2.39 FR1002人脸识别模块 FR1002人脸识别模组解决方案以高性能应用处理器为硬件平台&#xff0c;配合双目传感器进行活体检测&#xff0c;具有启动速度快、金融级的识别能力、超低使用功耗等特点。凭借超低功耗、强大的运算速度&#xff0c;在多种应用领域中&#xff0c;为各行…

关于《CS创世 SD NAND》的技术学习分享

最近发现一个好玩的东西《CS创世 SD NAND》&#xff0c;带大家一起体验一下。 本文引用了部分厂家产品资料及图像&#xff0c;如有侵权&#xff0c;请及时联系我删除&#xff0c;谢谢。 《CS创世 SD NAND》官方网站&#xff1a;http://www.longsto.com/ 什么是CS创世 SD NAND呢…

【300套】基于Springboot+Vue的Java实战开发项目(附源码+演示视频+LW)

大家好&#xff01;我是程序员一帆&#xff0c;感谢您阅读本文&#xff0c;欢迎一键三连哦。 &#x1f9e1;今天给大家分享300的Java毕业设计&#xff0c;基于Springbootvue框架&#xff0c;这些项目都经过精心挑选&#xff0c;涵盖了不同的实战主题和用例&#xff0c;可做毕业…

【vue】用vite创建vue项目

前置要求 要有Node.js 1. 用vite创建vue项目 在cmd中&#xff0c;进入一个文件夹 在文件资源管理器上面的文件目录中&#xff0c;输入cmd&#xff0c;回车在cmd中通过cd命令进入对应文件夹 创建项目 npm create vitelatest # 创建项目创建项目过程中的一些选项 Ok to pro…

Fake-SMS恶意软件混淆分析——低代码的时代来了

写在前面的话 在安全社区中&#xff0c;只要聊到开源代码使用方面的话题&#xff0c;就肯定会聊到安全问题。虽然使用开源代码通常会被认为是安全的&#xff0c;但我们需要清楚的是&#xff0c;与非FOSS&#xff08;自由与开源软件&#xff09;解决方案相比&#xff0c;开源软…

Hive on spark源码编译与调优

文章目录 一、编译环境准备1、hadoop和hive安装2、编译环境搭建3、Hive on Spark配置 二、Hive相关问题1、Hadoop和Hive的兼容性问题1.1 问题描述1.2 解决思路1.3 修改并编译Hive源码 2、Hive插入数据StatsTask失败问题3.1 问题描述3.2 解决思路 3、Hive和Spark兼容性问题3.1 问…

【Android surface 】二:源码分析App的surface创建过程

文章目录 画布surfaceViewRoot的创建&setView分析setViewrequestLayoutViewRoot和WMS的关系 activity的UI绘制draw surfacejni层分析Surface无参构造SurfaceSessionSurfaceSession_init surface的有参构造Surface_copyFromSurface_writeToParcelSurface_readFromParcel 总结…

【Hive上篇: 一篇文章带你使用Hive!深入了解Hive!学会Hive!】

前言&#xff1a; &#x1f49e;&#x1f49e;大家好&#xff0c;我是书生♡&#xff0c;本篇文章主要分享的是大数据开发中hive的相关技术&#xff0c;什么是Hive&#xff1f;怎么使用Hive&#xff1f;怎么安装部署&#xff1f;希望大家看完这篇文章会有所帮助。也希望大家能够…

Depth maps转点云

前言 本文主要记录一下如何可视化相机位姿&#xff0c;如何用Blender得到的深度图反投影到3D空间&#xff0c;得到相应的点云。 Refernce https://github.com/colmap/colmap/issues/1106 https://github.com/IntelRealSense/librealsense/issues/12090 https://medium.com/yod…

【详细讲解下Photoshop】

&#x1f3a5;博主&#xff1a;程序员不想YY啊 &#x1f4ab;CSDN优质创作者&#xff0c;CSDN实力新星&#xff0c;CSDN博客专家 &#x1f917;点赞&#x1f388;收藏⭐再看&#x1f4ab;养成习惯 ✨希望本文对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出…

鸿蒙 Failed :entry:default@CompileResource...

Failed :entry:defaultCompileResource... media 文件夹下有文件夹或者图片名称包含中文字符 rawfile 文件夹下文件名称、图片名称不能包含中文字符

地理空间分析中的深度学习应用

深度学习与地理信息系统 (GIS) 的结合彻底改变了地理空间分析和遥感的格局。这种结合将遥感和地理空间分析领域带到了全球研究人员和科学家的前沿。 深度学习是机器学习的一个复杂子集&#xff08;更多关于机器学习的内容&#xff0c;请参阅我的其他文章&#xff09;&#xff0…

绿色地狱steam叫什么 绿色地狱steam怎么搜

绿色地狱steam叫什么 绿色地狱steam怎么搜 《绿色地狱》是一款以亚马逊雨林为背景的开放世界生存模拟游戏。玩家们扮演一名被困在丛林中的冒险者&#xff0c;玩家在游戏内需要学习采集资源、建造庇护所、狩猎和烹饪食物&#xff0c;同时要面对丛林中的危险和挑战&#xff0c;…

太好玩了,我用 Python 做了一个 ChatGPT 机器人

毫无疑问&#xff0c;ChatGPT 已经是当下编程圈最火的话题之一&#xff0c;它不仅能够回答各类问题&#xff0c;甚至还能执行代码&#xff01; 或者是变成一只猫 因为它实在是太好玩&#xff0c;我使用Python将ChatGPT改造&#xff0c;可以实现在命令行或者Python代码中调用。…

langchain 链式写法-使用本地 embedding 模型,Faiss 检索

目录 示例代码1 示例代码2 示例代码1 使用本地下载的 embedding 模型去做 embedding&#xff0c;然后从中查相似的 import os from dotenv import load_dotenv from langchain_community.llms import Tongyi load_dotenv(key.env) # 指定加载 env 文件 key os.getenv(DAS…

ansible创建用户账户和更新ansible库的密钥

1.创建⽤户帐户 从 http://materials/user_list.yml 下载要创建的⽤户的列表&#xff0c;并将它保存到 /home/greg/ansible 在本次考试中使⽤在其他位置创建的密码库 /home/greg/ansible/locker.yml 。创建名为 /home/greg/ansible/users.yml 的 playbook &#xff0c;从⽽…

探索顶级短视频素材库:多样化选择助力创作

在数字创作的浪潮中&#xff0c;寻找优质的短视频素材库是每位视频制作者的必经之路。多种短视频素材库有哪些&#xff1f;这里为您介绍一系列精选的素材库&#xff0c;它们不仅丰富多样&#xff0c;而且高质量&#xff0c;能极大地提升您的视频创作效率和质量。 1.蛙学网 蛙学…

springboot+Vue项目部署到云服务器上

一、下载配置ngnix 1.压缩包下载并上传 链接: https://pan.baidu.com/s/1m2LKV8ci4WXkAWdJXIeUFQ 提取码: 0415 2.解压 tar -xzvf 压缩包名 3.编译nginx 在解压好的文件夹下,依次执行&#xff1a; ./configure 来到nginx默认安装路径/usr/local/nginx 依次执行命令 mak…