基于LangChain,使用自有知识库创建GPT智能体

大家好,Langchain智能体在定制对话界面方面具有实际应用潜力,能够灵活适应并满足用户的多样化需求。借助Langchain,开发者可以整合多种格式数据,如URL链接或PDF文件,来构建一个专属知识库。这个知识库不仅能够为智能体提供丰富的信息资源以回答问题,还能结合搜索引擎或Zapier等工具,实现更多自动化功能。

本文详细介绍如何搭建Langchain智能体,使其能够依据PDF文档内容提供答案,并通过Zapier平台自动化发送邮件。通过这些流程,大家能够深入了解并实践Langchain智能体的强大功能。

1.环境搭建

首先,需要安装Langchain和其他依赖项:

!pip install langchain
!pip install pypdf
!pip install pinecone-client
!pip install openai
!pip install tiktoken

还需要为OpenAI和Pinecone设置API密钥:

import os
import pineconeos.environ["OPENAI_API_KEY"] = "YOUR_OPENAI_API_KEY"# 初始化Pinecone
pinecone.init(api_key="YOUR_PINECONE_API_KEY",  # 在app.pinecone.io查找environment="YOUR_ENVIRONMENT_NAME"  # 控制台中API密钥旁边
)

2.创建索引

Langchain智能体能够利用定制化的知识库来检索和获取信息。为了让大型语言模型能够有效地理解并处理这些信息,需要确保其能够掌握相关的上下文。通常,可以通过将完整的上下文信息连同用户的查询一起输入模型来实现。然而,当处理大量数据时,这种方法就会变得不切实际。

为了解决这个问题,采用索引技术来优化知识库的存储和检索。通过索引,数据被划分为多个小片段,每个片段都通过向量形式编码了其语义信息。当用户发起查询,系统将根据查询内容搜索对应的向量,快速定位到包含所需信息的数据片段。这样,系统仅向语言模型提供与用户查询直接相关的数据片段,而不是将全部数据集一次性输入,从而大幅提高了检索效率,并确保结果的精确性。

2.1 从PDF加载数据

现在,为定制化知识库加载文档。使用PDF文件作为示例,但Langchain也支持其他格式。

from langchain.document_loaders import PyPDFLoaderloader = PyPDFLoader("PATH_TO_YOUR_FILE")
pages = loader.load_and_split()

2.2 将PDF文本分割成小块

分割文本的方法有很多。这里使用的是适用于各类文本的分割器。

from langchain.text_splitter import RecursiveCharacterTextSplittertext_splitter = RecursiveCharacterTextSplitter(chunk_size=1000,chunk_overlap=200,length_function=len,
)docs = text_splitter.split_documents(pages)

创建嵌入:

from langchain.embeddings.openai import OpenAIEmbeddingsembeddings = OpenAIEmbeddings()

2.3 创建向量存储

向量存储技术主要用于存储文档及其对应的嵌入向量,以便能够通过这些嵌入向量快速定位和检索到相关文档。

创建向量存储的方法有很多,本文使用Pinecone。要开始使用Pinecone,需要先在其平台上创建索引。然后在“index_name”中输入索引名称。

from langchain.vectorstores import Pineconeindex_name = "index_name"# 创建新索引
docsearch = Pinecone.from_documents(docs, embeddings, index_name=index_name)# 如果您已经有了索引,可以像这样进行加载
# docsearch = Pinecone.from_existing_index(index_name, embeddings)

如果无法创建Pinecone账户,可以尝试使用CromaDB。以下代码使用Chroma创建了一个临时的内存向量存储,如果无法访问Pinecone,请使用它作为替代。

from langchain.vectorstores import Chroma
docsearch = Chroma.from_documents(docs, embeddings)

3.问题回答链

问题回答链能够确保系统根据上下文提供恰当的答案。

from langchain.chains import RetrievalQA
from langchain import OpenAI# 定义LLM
llm = OpenAI(temperature=0.2)qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=docsearch.as_retriever(search_kwargs={"k": 2}))

可以通过传递一个问题来测试QA链:

query = "What is DesignOps support model?"
qa.run(query)

这段代码的输出会基于PDF文件中相关上下文块的问题答案。

4.Zapier集成

可以使用Langchain Zapier工具包将智能体与Zapier集成。首先,需要在https://nla.zapier.com/获取Zapier API密钥,并在Zapier中添加将要使用的操作。

os.environ["ZAPIER_NLA_API_KEY"] = os.environ.get("ZAPIER_NLA_API_KEY", "YOUR_ZAPIER_API_KEY")接下来,初始化Zapier工具包from langchain.agents.agent_toolkits import ZapierToolkit
from langchain.utilities.zapier import ZapierNLAWrapperzapier = ZapierNLAWrapper()
toolkit = ZapierToolkit.from_zapier_nla_wrapper(zapier)

5.构建Langchain智能体

from langchain.agents import AgentType
from langchain.agents import initialize_agent, Tool
from langchain.memory import ConversationBufferMemory
from langchain.chat_models import ChatOpenAI# 为智能体定义工具
tools = [Tool(name="Demo",func=qa.run,description="use this as the primary source of context information when you are asked the question. Always search for the answers using this tool first, don't make up answers yourself"),
] + toolkit.get_tools()# 设置对话记忆
memory = ConversationBufferMemory(memory_key="chat_history")# 设置智能体
agent_chain = initialize_agent(tools, llm, agent=AgentType.CONVERSATIONAL_REACT_DESCRIPTION, verbose=True, memory=memory)

现在已经设置好了智能体,可以通过提问进行测试。智能体将使用问题回答链来找到相关上下文并生成答案,执行用户请求中指定的其他任务。

agent_chain.run(input="What Adrienne Allnutt have said about DesignOps?")
agent_chain.run(input="Email the answer to email@gmail.com and mention that this email was sent by AI")

为了让智能体正确执行用户的指令,构建准确的提示十分重要。在开发面向用户的应用时,我们应该深入研究如何设计有效的提示模板,以简化用户与智能体的交互过程。同时,还需要考虑聊天界面是否是最合适的交互方式,或是否有其他界面设计能提供更优的用户体验。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/816533.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Niobe开发板OpenHarmony内核编程开发——定时器

本示例将演示如何在Niobe Wifi IoT开发板上使用cmsis 2.0 接口进行定时器开发 Timer API分析 osTimerNew() /// Create and Initialize a timer./// \param[in] func function pointer to callback function./// \param[in] type \ref osTimerOnce …

LLM-大模型演化分支树、GPT派发展阶段及训练流程图、Infini-Transformer说明

大模型是怎么演进的? Encoder Only: 对应粉色分支,即BERT派,典型模型: BERT 自编码模型(Autoencoder Model):通过重建句子来进行预训练,通常用于理解任务,如文本分类和阅…

2440栈的实现类型、b系列指令、汇编掉用c、c调用汇编、切换工作模式、初始化异常向量表、中断处理、

我要成为嵌入式高手之4月11日51ARM第六天!! ———————————————————————————— b指令 标签:表示这条指令的名称,可跳转至标签 b指令:相当于goto,可随意跳转 如:fini…

【C++】详解类的--封装思想(让你丝滑的从C语言过度到C++!!)

目录 一、前言 二、【面向过程】 与 【面向对象】 三、结构体 与 类 🍎C中结构体的变化 🍉C中结构体的具体使用 🍐结构体 --> 类 ✨类-----语法格式: ✨类的两种定义方式: 四、类的访问限定符及封装【⭐】 …

acwing算法提高之图论--最近公共祖先

目录 1 介绍2 训练 1 介绍 本博客用来记录"对于有根图中,求最近公共祖先"的题目。 求解方法: 向上标记法。每次求两个结点的最近公共祖先的时间复杂度是O(N)。由于时间复杂度较高,通常不用。倍增法。 倍增法重要思路&#xff1…

labview中的同步定时结构

单帧定时循环定时比较精确,最常用的功能还是它的定时循环功能,定时循环允许不连接“循环条件”端子,可以连接定时循环“结构名称”端子,通过定时结构停止函数停止循环。 例子在附件中。

Red Hat Enterprise Linux提示:正在更新Suscription Manager软件仓库,无法读取客户身份,本系统尚未在权利服务器中注册。

1、问题概述? 在Red Hat Enterprise Linux系统中执行sudo yum -y update命令的时候提示如下问题。 正在更新 Subscription Management 软件仓库。无法读取客户身份 本系统尚未在权利服务器中注册。可使用 subscription-manager进行注册。 错误:在"/etc/yum.r…

RMT: Retentive Networks Meet Vision Transformers学习笔记

代码地址:GitHub - qhfan/RMT: (CVPR2024)RMT: Retentive Networks Meet Vision Transformer 论文地址:https://arxiv.org/pdf/2309.11523.pdf Transformer首次出现在自然语言处理领域,后来迁移到计算机视觉领域,在视觉任务中表现…

《Kubernetes部署篇:基于Kylin V10+ARM架构CPU使用containerd部署K8S 1.26.15集群(一主多从)》

总结:整理不易,如果对你有帮助,可否点赞关注一下? 更多详细内容请参考:企业级K8s集群运维实战 1、在当前实验环境中安装K8S1.25.14版本,出现了一个问题,就是在pod中访问百度网站,大…

u-boot 学习笔记:uclass 与 UCLASS_DRIVER 的理解

前言 u-boot 是嵌入式开发中经常使用的一种 bootloader,兼顾 boot (启动)与 loader(引导)等基础功能,应用于 ARM 等多个平台,通用性比较好,在嵌入式 Linux 开发中,用于引…

Form表单控件主要标签及属性。name属性,value属性,id属性详解。表单内容的传递流程,get和post数据传递样式。表单数据传递实例

form表单 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Document</title> </head> &…

ubuntu 安装java

在Ubuntu上安装Java通常有两种方式&#xff1a;使用包管理器安装默认仓库中的Java或者手动安装Oracle JDK。 使用APT包管理器安装&#xff1a; sudo apt update sudo apt install default-jdk 手动安装Oracle JDK&#xff1a; 首先&#xff0c;你需要从Oracle官网下载JDK的…

PromptRPA-手机上的智能代理框架

PromptRPA的设计基于一个智能代理的多代理框架&#xff0c;这些代理模拟人类的认知功能&#xff0c;专门用于解释用户意图、管理RPA生成的外部信息以及在智能手机上执行操作。传统的RPA技术能有效地自动化图形用户界面&#xff08;GUI&#xff09;上的任务&#xff0c;通过模仿…

浏览器缓存(强缓存、协商缓存)

一、浏览器缓存 这一点主要解析浏览器缓存以及缓存机制的详细过程。 与缓存相关的状态码&#xff1a; 200 ok 从浏览器下载的最新资源 200 (from memory cache) 不进行http请求&#xff0c;直接从浏览器内存中读取的资源&#xff0c;页面关闭&#xff0c;则资源释放&a…

【攻防世界】bug

垂直越权IP绕过文件上传 文件上传绕过&#xff1a; 1. mime检测 2. 大小写绕过 3. 等价替换&#xff08;php5&#xff0c;php3&#xff09; 4. 利用JavaScript执行php代码&#xff08;正常的php代码会被检测到&#xff0c;所以就用JavaScript来执行&#xff09; <script lan…

Linxu vim详解(常用命令)

目录 强烈建议全文阅读&#xff01; vim是什么&#xff1f; 命令模式 底行模式&#xff1a;shift &#xff1b; 普通用户无法sodu&#xff1f; vim配置问题&#xff1a;&#xff08;一点都不重要&#xff09; vim是什么&#xff1f; Vs 2022是一款集成开发软件 vim是一…

记录一下MySQL8版本更改密码规则

#查看当前密码策略 show variables like validate_password%;#修改密码等级为low set global validate_password.policy LOW; #注意MySQL8版本这是点&#xff0c;不是_#修改密码长度为6 set global validate_password.length 6;#查询我的数据库中user表host和user select host,…

[C++][算法基础]SPFA求负权边(Dijkstra优化)

给定一个 n 个点 m 条边的有向图&#xff0c;图中可能存在重边和自环&#xff0c; 边权可能为负数。 请你判断图中是否存在负权回路。 输入格式 第一行包含整数 n 和 m。 接下来 m 行每行包含三个整数 x,y,z&#xff0c;表示存在一条从点 x 到点 y 的有向边&#xff0c;边长…

康耐视visionpro-CogFindCircleTool操作工具详细说明

◆CogFindCircleTool]功能说明: 通过用多个卡尺找到多个点来拟合所要找的圆 ◆CogFindCircleTool操作说明: ①.打开工具栏,双击或点击鼠标拖拽添加CogFindCircleTool工具 ②.添加输入图像,右键“链接到”或以连线拖拽的方式选择相应输入源 ③预期的圆弧:设置预期圆弧的…

消除 BEV 空间中的跨模态冲突,实现 LiDAR 相机 3D 目标检测

Eliminating Cross-modal Conflicts in BEV Space for LiDAR-Camera 3D Object Detection 消除 BEV 空间中的跨模态冲突&#xff0c;实现 LiDAR 相机 3D 目标检测 摘要Introduction本文方法Single-Modal BEV Feature ExtractionSemantic-guided Flow-based AlignmentDissolved…