【C++】模拟list

list的模拟真的很震撼,第一次学习时给我幼小的心灵留下了极大地冲击
接下来我们一起看看list模拟究竟是怎样一回事

目录

  • 节点的封装:
  • list类的实现:
    • 私有成员变量:
    • 构造函数:
    • push_back && pop_back:
  • 迭代器类的实现:
    • begin && end(不可被const对象调用):
    • begin && end(可被const对象调用):
  • 继续list类的实现:
    • insert && erase:
    • 带参构造函数:
    • 迭代器区间构造:
    • 拷贝构造:
    • 赋值运算符重载:
    • 析构函数:

节点的封装:

我们在之前没用CPP实现list时,是定义了一个struct node的结构体

typedef int SLTDateType;
typedef struct SListNode
{SLTDateType data;struct SListNode* next;
}SListNode;

那我们现在当然也需要定义一个结构体

	template<class T>struct list_node{T _val;list_node<T>* _prev;list_node<T>* _next;list_node(const T& data = T()){_val = data;_prev = _next = nullptr;}};

但是要写一个默认构造函数,因为未来我们会new节点,就像我们在C阶段malloc的一样。

那么为什么要使用sruct而不是class呢,因为我们希望这个节点结构体有了他的地址可以直接访问成员变量,而设置为class时除非进行public否则不是很方便。

list类的实现:

私有成员变量:

由于我们会使用模版,因此在写类型是比较不方便,于是可以define一下typedef list_node<T> node;

	private:node* _head;

注意:我们的stl库中的list是有哨兵位的,故私有成员设为_head。

构造函数:

		list(){empty_init();}

为什么要先写个空初始化呢?因为后边的成员函数有一些也需要进行初始化,因此写成一个函数进行复用。

		void empty_init(){_head = new node();_head->_next = _head;_head->_prev = _head;}

push_back && pop_back:

我们先搭一个架子出来,随后在进行细节的填补。

push_back():

		void push_back(const T& val){node* newnode = new node(val);node* tail = _head->_prev;tail->_next = newnode;newnode->_prev = tail;newnode->_next = _head;_head->_prev = newnode;}

pop_back:

		void pop_back(){node* prev = (it._node)->_prev;node* next = (it._node)->_next;delete it._node;prev->_next = next;next->_prev = prev;}

有了节点之后我们怎样进行访问?
没错就是使用迭代器。

迭代器类的实现:

我们的list的迭代器为什么要封装成一个类?
因为在vector那种底层虚拟地址是连续的,当我们有一个指定位置的指针,直接对指针进行++--*…都是没问题的,因为我们的迭代器本质就是一个模仿指针行为的一个东西

但是我们的链表节点的底层并不是连续的,是一个一个new出来的,并不能保证底层虚拟地址的连续性,所以要对链表节点的指针进行封装,进行重载操作符进而可以模拟指针的行为!!

	template<class T>struct list_iterator{typedef list_node<T> node;typedef list_iterator<T> self;node* _node;list_iterator(node* Node){_node = Node;}self& operator++(){_node = _node->_next;return *this;}self operator--(int){self tmp = *this;_node = _node->_prev;return tmp;}self& operator--(){_node = _node->_prev;return *this;}self operator++(int){self tmp = *this;_node = _node->_next;return tmp;}bool operator!=(self it){return it._node != _node;}T& operator*(){return _node->_val;}};

对需要进行相关运算符重载的都进行一遍。

如此我们一个最简单的list框架就已经搭建成功了。
不要忘记在list类中进行将list_iteratortypedef为iterator,因为这样我们的代码才具有跨平台性。

同时要在list类中写上begin与end这两个获取迭代器的函数。

begin && end(不可被const对象调用):

		iterator begin(){return _head->_next;}iterator end(){return _head;}

我们为啥可以这么写?_head的类型不是node*?原生的类型显示为list_node<T>*,可是迭代器的类型是list_iterator ,完全不一样啊,这是因为我们C++支持单参数的构造函数隐式类型转换,直接对_head这个指针利用iterator的构造函数构造成迭代器

但是我们这个list目前对于const对象是很难遍历的,所以当然要实现const迭代器。

我们有两种方式,第一种是将普通迭代器的复制一份改为const迭代器,对*这个操作符重载返回const对象,这样就不怕const对象被修改了。

但是这样的代码是在是冗余,不要忘记我们还有模版的存在!
我们如果将迭代器的模版参数多设计一个T的引用,在list类中将这个迭代器类进行typedef

typedef list_iterator<T, T&> iterator;
typedef list_iterator<T, const T&> const_iterator;

那么我们这样就可以很好解决当前代码重复度高,比较冗余的缺点。

	template<class T, class Ref>//多传递的模版参数struct list_iterator{typedef list_node<T> node;typedef list_iterator<T, Ref> self;node* _node;list_iterator(node* Node){_node = Node;}self& operator++(){_node = _node->_next;return *this;}self operator--(int){self tmp = *this;_node = _node->_prev;return tmp;}self& operator--(){_node = _node->_prev;return *this;}self operator++(int){self tmp = *this;_node = _node->_next;return tmp;}bool operator!=(self it){return it._node != _node;}Ref operator*(){return _node->_val;}};

这样就可以根据是否为const对象而生成不同的迭代器类了!

begin && end(可被const对象调用):

		iterator begin(){return _head->_next;}iterator end(){return _head;}const_iterator begin() const{return _head->_next;}const_iterator end() const{return _head;}

继续list类的实现:

有了迭代器我们就可以写insert,erase等等函数,进而对push_back/front…等等函数的复用:

insert && erase:

		void insert(iterator pos, const T& val){node* newnode = new node(val);node* prev = pos._node->_prev;node* cur = pos._node;prev->_next = newnode;newnode->_prev = prev;newnode->_next = cur;cur->_prev = newnode;}iterator erase(iterator pos){node* prev = pos._node->_prev;node* next = pos._node->_next;delete pos._node;prev->_next = next;next->_prev = prev;return next;}

带参构造函数:

		list(int n, const T& val = T()){empty_init();while (n--){push_back(val);}}

直接复用push_back

迭代器区间构造:

		template <class Iterator>list(Iterator first, Iterator last){empty_init();while (first != last){push_back(*first);first++;}}

拷贝构造:

		list(const list<T>& lt){empty_init();list<T>::const_iterator it = lt.begin();while (it != lt.end()){push_back(*it);it++;}}

赋值运算符重载:

		void swap(list<T> lt){std::swap(_head, lt._head);}list<T>& operator=(list<T> lt){swap(lt);return *this;}

析构函数:

		~list(){clear();delete _head;}void clear(){iterator it = begin();while (it != end()){it = erase(it);}}

由此list类就模拟完毕,如果有不明白的地方可以尽管来找博主

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/815832.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于ICEEMDAN-SVD的信号去噪算法

一、代码原理 ICEEMDAN-SVD算法是一种结合了Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN) 和奇异值分解 (SVD) 的信号去噪方法。这种算法结合了两种先进的信号处理技术&#xff0c;旨在提高信号去噪的效果。以下是该算法的基本原…

第24次修改了可删除可持久保存的前端html备忘录:文本编辑框不再隐藏,又增加了哔哩哔哩搜索和必应搜索

第24次修改了可删除可持久保存的前端html备忘录:文本编辑框不再隐藏&#xff0c;又增加了哔哩哔哩搜索和必应搜索. <!DOCTYPE html> <html lang"zh"><head><meta charset"UTF-8"><meta name"viewport" content"…

shell-将密码输入错误超过4次的IP地址通过firewalld防火墙阻止访问

应用场景&#xff1a;防止恶意IP尝试ssh登录 脚本说明&#xff1a;将密码输入错误超过四次得ip地址通过iptable防火墙访问。 分析&#xff1a; 首先&#xff0c;需要知道ssh远程访问记录在哪一个文件中 /var/log/secure 其次&#xff0c;模拟远程访问输错密码&#xff0c;查…

Vulnhub靶机 DC-1渗透详细过程

Vulnhub靶机:DC-1渗透详细过程 目录 Vulnhub靶机:DC-1渗透详细过程一、将靶机导入到虚拟机当中二、攻击方式主机发现端口扫描web渗透利用msf反弹shell数据库信息web管理员密码提权 一、将靶机导入到虚拟机当中 靶机地址&#xff1a; https://www.vulnhub.com/entry/dc-1-1,29…

【域适应】基于域分离网络的MNIST数据10分类典型方法实现

关于 大规模数据收集和注释的成本通常使得将机器学习算法应用于新任务或数据集变得异常昂贵。规避这一成本的一种方法是在合成数据上训练模型&#xff0c;其中自动提供注释。尽管它们很有吸引力&#xff0c;但此类模型通常无法从合成图像推广到真实图像&#xff0c;因此需要域…

685. 冗余连接 II

685. 冗余连接 II 原题链接&#xff1a;完成情况&#xff1a;解题思路&#xff1a;参考代码&#xff1a;错误经验吸取 原题链接&#xff1a; 685. 冗余连接 II https://leetcode.cn/problems/redundant-connection-ii/description/ 完成情况&#xff1a; 解题思路&#xf…

在Mac上更好的运行Windows,推荐这几款Mac虚拟机 mac运行windows虚拟机性能

想要在Mac OS上更好的运行Windows系统吗&#xff1f;推荐你使用mac虚拟机。虚拟机通过生成现有操作系统的全新虚拟镜像&#xff0c;它具有真实windows系统完全一样的功能&#xff0c;进入虚拟系统后&#xff0c;所有操作都是在这个全新的独立的虚拟系统里面进行&#xff0c;可以…

vue列表列表过滤

对已知的列表进行数据过滤(根据输入框里面的内容进行数据过滤) 编写案例 通过案例来演示说明 效果就是这样的 输入框是模糊查询 想要实现功能&#xff0c;其实就两大步&#xff0c;1获取输入框内容 2根据输入内容进行数据过滤 绑定收集数据 我们可以使用v-model去双向绑定 …

深入理解Cortex-M7 SVC和PendSV

1前言 1.1 PendSV 在ARM V7上&#xff0c;PendSV用来作为RTOS调度器的御用通道&#xff0c;上下文切换&#xff0c;任务调度都是在其ISR中实现的。所谓pend&#xff0c;字面意思即有悬起等待的意思&#xff0c;ARM官方也明确说明&#xff0c;PendSV应该在其他异常处理完毕后执…

python的算术运算符

python常用算术运算符代码如下&#xff1a; #算术运算符操作 x 10 y 20 z 30 #加法运算 a x y print("a的值为&#xff1a;", a) #减法运算 a x - y print("a的值为&#xff1a;", a) #乘法运算 a x*y print("a的值为&#xff1a;", a) …

计算机网络——ARP协议

前言 本博客是博主用于复习计算机网络的博客&#xff0c;如果疏忽出现错误&#xff0c;还望各位指正。 这篇博客是在B站掌芝士zzs这个UP主的视频的总结&#xff0c;讲的非常好。 可以先去看一篇视频&#xff0c;再来参考这篇笔记&#xff08;或者说直接偷走&#xff09;。 …

OpenCV4.9​​​​基本阈值操作

目标 在本教程中&#xff0c;您将学习如何&#xff1a; 使用 OpenCV 函数 cv&#xff1a;&#xff1a;threshold 执行基本阈值操作 理论依据 注意 下面的解释属于 Bradski 和 Kaehler 的 Learning OpenCV 一书 阈值&#xff1f; 最简单的分割方法应用示例&#xff1a;分…

步骤大全:网站建设3个基本流程详解

一.领取一个免费域名和SSL证书&#xff0c;和CDN 1.打开网站链接&#xff1a;https://www.rainyun.com/z22_ 2.在网站主页上&#xff0c;您会看到一个"登陆/注册"的选项。 3.点击"登陆/注册"&#xff0c;然后选择"微信登录"选项。 4.使用您的…

Claude3和GPT4哪个强?

在短短两个月内&#xff0c;全球最强人工智能的桂冠再次易主。此前&#xff0c;Claude3 Opus以其卓越的表现超越了GPT-4&#xff0c;吸引了无数用户抛弃GPT&#xff0c;转而拥抱Claude3。然而&#xff0c;OpenAI近日强势回归&#xff0c;用实力证明了GPT依然是人工智能领域的霸…

Jmeter杂记:测试计划参数详解

测试计划各参数详解 1&#xff0c;用户自定义变量&#xff0c;是全局变量&#xff0c;供所有线程组使用&#xff0c;可用配置元件&#xff1a;用户自定义变量替代 2&#xff0c;连续的运行线程组&#xff0c;默认不勾选&#xff0c;则随机的运行多个线程组中的取样器&#xff…

图机器学习NetworkX代码实战-创建图和可视化

完整代码见资源&#xff0c;下面列举了其中的几个图 安装networkX及相应工具包 pip install numpy pandas matplotlib tqdm networkx 当安装完成后&#xff0c;输入如下代码验证版本及是否安装成功 import networkx as nxnx.__version__ import matplotlib.pyplot as plt …

国内ai人工智能软件大全

很多人一直在寻找一个稳定且可靠的全球AI大模型测试平台&#xff0c;希望它不仅真实可信&#xff0c;而且能提供稳定、快速的服务&#xff0c;不会频繁出现故障或响应缓慢。迄今为止&#xff0c;我已经尝试了国内外至少10个不同的服务站点。不幸的是&#xff0c;这些站点总是存…

Linux 文件页反向映射

0. 引言 操作系统中与匿名页相对的是文件页&#xff0c;文件页的反向映射对比匿名页的反向映射更为简单。如果还不清楚匿名页反向映射逻辑的&#xff0c;请移步 匿名页反向映射 1. 文件页反向映射数据结构 struct file&#xff1a; 用户进程每open()一次文件&#xff0c;则会生…

Promise实现

Promise实现 const PENDING pending const FULFILLED fulfilled const REJECTED rejectedclass MPromise {FULFILLED_CALLBACK_LIST []REJECTED_CALLBACK_LIST []_status PENDINGconstructor(fn) {// 初始状态为pendingthis.status PENDINGthis.value nullthis.reason…

分享一个 git stash 的实际使用场景。

当我将新的变更记录提交为 git commit --amend 后&#xff0c;发现这需要修改云端上的提交记录&#xff0c;也就是 vscode 中会出现这张图 于是&#xff0c;我通过 git reset head^ 撤销掉刚刚的提交。 reset 前&#xff1a; reset 后&#xff1a; 但在撤销的同时&#xf…