day21算法

常见的七种查找算法:

​ 数据结构是数据存储的方式,算法是数据计算的方式。所以在开发中,算法和数据结构息息相关。今天的讲义中会涉及部分数据结构的专业名词,如果各位铁粉有疑惑,可以先看一下哥们后面录制的数据结构,再回头看算法。

1. 基本查找

​ 也叫做顺序查找

​ 说明:顺序查找适合于存储结构为数组或者链表。

基本思想:顺序查找也称为线形查找,属于无序查找算法。从数据结构线的一端开始,顺序扫描,依次将遍历到的结点与要查找的值相比较,若相等则表示查找成功;若遍历结束仍没有找到相同的,表示查找失败。

示例代码:

public class A01_BasicSearchDemo1 {public static void main(String[] args) {//基本查找/顺序查找//核心://从0索引开始挨个往后查找//需求:定义一个方法利用基本查找,查询某个元素是否存在//数据如下:{131, 127, 147, 81, 103, 23, 7, 79}int[] arr = {131, 127, 147, 81, 103, 23, 7, 79};int number = 82;System.out.println(basicSearch(arr, number));}//参数://一:数组//二:要查找的元素//返回值://元素是否存在public static boolean basicSearch(int[] arr, int number){//利用基本查找来查找number在数组中是否存在for (int i = 0; i < arr.length; i++) {if(arr[i] == number){return true;}}return false;}
}

2. 二分查找

​ 也叫做折半查找

说明:元素必须是有序的,从小到大,或者从大到小都是可以的。

如果是无序的,也可以先进行排序。但是排序之后,会改变原有数据的顺序,查找出来元素位置跟原来的元素可能是不一样的,所以排序之后再查找只能判断当前数据是否在容器当中,返回的索引无实际的意义。

基本思想:也称为是折半查找,属于有序查找算法。用给定值先与中间结点比较。比较完之后有三种情况:

  • 相等

    说明找到了

  • 要查找的数据比中间节点小

    说明要查找的数字在中间节点左边

  • 要查找的数据比中间节点大

    说明要查找的数字在中间节点右边

代码示例:

package com.itheima.search;public class A02_BinarySearchDemo1 {public static void main(String[] args) {//二分查找/折半查找//核心://每次排除一半的查找范围//需求:定义一个方法利用二分查找,查询某个元素在数组中的索引//数据如下:{7, 23, 79, 81, 103, 127, 131, 147}int[] arr = {7, 23, 79, 81, 103, 127, 131, 147};System.out.println(binarySearch(arr, 150));}public static int binarySearch(int[] arr, int number){//1.定义两个变量记录要查找的范围int min = 0;int max = arr.length - 1;//2.利用循环不断的去找要查找的数据while(true){if(min > max){return -1;}//3.找到min和max的中间位置int mid = (min + max) / 2;//4.拿着mid指向的元素跟要查找的元素进行比较if(arr[mid] > number){//4.1 number在mid的左边//min不变,max = mid - 1;max = mid - 1;}else if(arr[mid] < number){//4.2 number在mid的右边//max不变,min = mid + 1;min = mid + 1;}else{//4.3 number跟mid指向的元素一样//找到了return mid;}}}
}

3. 插值查找

在介绍插值查找之前,先考虑一个问题:

​ 为什么二分查找算法一定要是折半,而不是折四分之一或者折更多呢?

其实就是因为方便,简单,但是如果我能在二分查找的基础上,让中间的mid点,尽可能靠近想要查找的元素,那不就能提高查找的效率了吗?

二分查找中查找点计算如下:

mid=(low+high)/2, 即mid=low+1/2*(high-low);

我们可以将查找的点改进为如下:

mid=low+(key-a[low])/(a[high]-a[low])*(high-low),

这样,让mid值的变化更靠近关键字key,这样也就间接地减少了比较次数。

基本思想:基于二分查找算法,将查找点的选择改进为自适应选择,可以提高查找效率。当然,差值查找也属于有序查找。

**细节:**对于表长较大,而关键字分布又比较均匀的查找表来说,插值查找算法的平均性能比折半查找要好的多。反之,数组中如果分布非常不均匀,那么插值查找未必是很合适的选择。

代码跟二分查找类似,只要修改一下mid的计算方式即可。

4. 斐波那契查找

在介绍斐波那契查找算法之前,我们先介绍一下很它紧密相连并且大家都熟知的一个概念——黄金分割。

黄金比例又称黄金分割,是指事物各部分间一定的数学比例关系,即将整体一分为二,较大部分与较小部分之比等于整体与较大部分之比,其比值约为1:0.618或1.618:1。

0.618被公认为最具有审美意义的比例数字,这个数值的作用不仅仅体现在诸如绘画、雕塑、音乐、建筑等艺术领域,而且在管理、工程设计等方面也有着不可忽视的作用。因此被称为黄金分割。

在数学中有一个非常有名的数学规律:斐波那契数列:1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89…….

(从第三个数开始,后边每一个数都是前两个数的和)。

然后我们会发现,随着斐波那契数列的递增,前后两个数的比值会越来越接近0.618,利用这个特性,我们就可以将黄金比例运用到查找技术中。

img

基本思想:也是二分查找的一种提升算法,通过运用黄金比例的概念在数列中选择查找点进行查找,提高查找效率。同样地,斐波那契查找也属于一种有序查找算法。

斐波那契查找也是在二分查找的基础上进行了优化,优化中间点mid的计算方式即可

代码示例:

public class FeiBoSearchDemo {public static int maxSize = 20;public static void main(String[] args) {int[] arr = {1, 8, 10, 89, 1000, 1234};System.out.println(search(arr, 1234));}public static int[] getFeiBo() {int[] arr = new int[maxSize];arr[0] = 1;arr[1] = 1;for (int i = 2; i < maxSize; i++) {arr[i] = arr[i - 1] + arr[i - 2];}return arr;}public static int search(int[] arr, int key) {int low = 0;int high = arr.length - 1;//表示斐波那契数分割数的下标值int index = 0;int mid = 0;//调用斐波那契数列int[] f = getFeiBo();//获取斐波那契分割数值的下标while (high > (f[index] - 1)) {index++;}//因为f[k]值可能大于a的长度,因此需要使用Arrays工具类,构造一个新法数组,并指向temp[],不足的部分会使用0补齐int[] temp = Arrays.copyOf(arr, f[index]);//实际需要使用arr数组的最后一个数来填充不足的部分for (int i = high + 1; i < temp.length; i++) {temp[i] = arr[high];}//使用while循环处理,找到key值while (low <= high) {mid = low + f[index - 1] - 1;if (key < temp[mid]) {//向数组的前面部分进行查找high = mid - 1;/*对k--进行理解1.全部元素=前面的元素+后面的元素2.f[k]=k[k-1]+f[k-2]因为前面有k-1个元素没所以可以继续分为f[k-1]=f[k-2]+f[k-3]即在f[k-1]的前面继续查找k--即下次循环,mid=f[k-1-1]-1*/index--;} else if (key > temp[mid]) {//向数组的后面的部分进行查找low = mid + 1;index -= 2;} else {//找到了//需要确定返回的是哪个下标if (mid <= high) {return mid;} else {return high;}}}return -1;}
}

5. 分块查找

当数据表中的数据元素很多时,可以采用分块查找。

汲取了顺序查找和折半查找各自的优点,既有动态结构,又适于快速查找

分块查找适用于数据较多,但是数据不会发生变化的情况,如果需要一边添加一边查找,建议使用哈希查找

分块查找的过程:

  1. 需要把数据分成N多小块,块与块之间不能有数据重复的交集。
  2. 给每一块创建对象单独存储到数组当中
  3. 查找数据的时候,先在数组查,当前数据属于哪一块
  4. 再到这一块中顺序查找

代码示例:

package com.itheima.search;public class A03_BlockSearchDemo {public static void main(String[] args) {/*分块查找核心思想:块内无序,块间有序实现步骤:1.创建数组blockArr存放每一个块对象的信息2.先查找blockArr确定要查找的数据属于哪一块3.再单独遍历这一块数据即可*/int[] arr = {16, 5, 9, 12,21, 18,32, 23, 37, 26, 45, 34,50, 48, 61, 52, 73, 66};//创建三个块的对象Block b1 = new Block(21,0,5);Block b2 = new Block(45,6,11);Block b3 = new Block(73,12,17);//定义数组用来管理三个块的对象(索引表)Block[] blockArr = {b1,b2,b3};//定义一个变量用来记录要查找的元素int number = 37;//调用方法,传递索引表,数组,要查找的元素int index = getIndex(blockArr,arr,number);//打印一下System.out.println(index);}//利用分块查找的原理,查询number的索引private static int getIndex(Block[] blockArr, int[] arr, int number) {//1.确定number是在那一块当中int indexBlock = findIndexBlock(blockArr, number);if(indexBlock == -1){//表示number不在数组当中return -1;}//2.获取这一块的起始索引和结束索引   --- 30// Block b1 = new Block(21,0,5);   ----  0// Block b2 = new Block(45,6,11);  ----  1// Block b3 = new Block(73,12,17); ----  2int startIndex = blockArr[indexBlock].getStartIndex();int endIndex = blockArr[indexBlock].getEndIndex();//3.遍历for (int i = startIndex; i <= endIndex; i++) {if(arr[i] == number){return i;}}return -1;}//定义一个方法,用来确定number在哪一块当中public static int findIndexBlock(Block[] blockArr,int number){ //100//从0索引开始遍历blockArr,如果number小于max,那么就表示number是在这一块当中的for (int i = 0; i < blockArr.length; i++) {if(number <= blockArr[i].getMax()){return i;}}return -1;}}class Block{private int max;//最大值private int startIndex;//起始索引private int endIndex;//结束索引public Block() {}public Block(int max, int startIndex, int endIndex) {this.max = max;this.startIndex = startIndex;this.endIndex = endIndex;}/*** 获取* @return max*/public int getMax() {return max;}/*** 设置* @param max*/public void setMax(int max) {this.max = max;}/*** 获取* @return startIndex*/public int getStartIndex() {return startIndex;}/*** 设置* @param startIndex*/public void setStartIndex(int startIndex) {this.startIndex = startIndex;}/*** 获取* @return endIndex*/public int getEndIndex() {return endIndex;}/*** 设置* @param endIndex*/public void setEndIndex(int endIndex) {this.endIndex = endIndex;}public String toString() {return "Block{max = " + max + ", startIndex = " + startIndex + ", endIndex = " + endIndex + "}";}
}

6. 哈希查找

哈希查找是分块查找的进阶版,适用于数据一边添加一边查找的情况。

一般是数组 + 链表的结合体或者是数组+链表 + 红黑树的结合体

在课程中,为了让大家方便理解,所以规定:

  • 数组的0索引处存储1~100
  • 数组的1索引处存储101~200
  • 数组的2索引处存储201~300
  • 以此类推

但是实际上,我们一般不会采取这种方式,因为这种方式容易导致一块区域添加的元素过多,导致效率偏低。

更多的是先计算出当前数据的哈希值,用哈希值跟数组的长度进行计算,计算出应存入的位置,再挂在数组的后面形成链表,如果挂的元素太多而且数组长度过长,我们也会把链表转化为红黑树,进一步提高效率。

具体的过程,大家可以参见B站阿玮讲解课程:从入门到起飞。在集合章节详细讲解了哈希表的数据结构。全程采取动画形式讲解,让大家一目了然。

在此不多做阐述。

7. 树表查找

本知识点涉及到数据结构:树。

建议先看一下后面阿玮讲解的数据结构,再回头理解。

基本思想:二叉查找树是先对待查找的数据进行生成树,确保树的左分支的值小于右分支的值,然后在就行和每个节点的父节点比较大小,查找最适合的范围。 这个算法的查找效率很高,但是如果使用这种查找方法要首先创建树。

二叉查找树(BinarySearch Tree,也叫二叉搜索树,或称二叉排序树Binary Sort Tree),具有下列性质的二叉树:

1)若任意节点左子树上所有的数据,均小于本身;

2)若任意节点右子树上所有的数据,均大于本身;

二叉查找树性质:对二叉查找树进行中序遍历,即可得到有序的数列。

​ 不同形态的二叉查找树如下图所示:

在这里插入图片描述

基于二叉查找树进行优化,进而可以得到其他的树表查找算法,如平衡树、红黑树等高效算法。

具体细节大家可以参见B站阿玮讲解课程:从入门到起飞。在集合章节详细讲解了树数据结构。全程采取动画形式讲解,让大家一目了然。

在此不多做阐述。

​ 不管是二叉查找树,还是平衡二叉树,还是红黑树,查找的性能都比较高

十大排序算法:

1. 冒泡排序

冒泡排序(Bubble Sort)也是一种简单直观的排序算法。

它重复的遍历过要排序的数列,一次比较相邻的两个元素,如果他们的顺序错误就把他们交换过来。

这个算法的名字由来是因为越大的元素会经由交换慢慢"浮"到最后面。

当然,大家可以按照从大到小的方式进行排列。

1.1 算法步骤

  1. 相邻的元素两两比较,大的放右边,小的放左边
  2. 第一轮比较完毕之后,最大值就已经确定,第二轮可以少循环一次,后面以此类推
  3. 如果数组中有n个数据,总共我们只要执行n-1轮的代码就可以

1.2 动图演示

在这里插入图片描述

1.3 代码示例

public class A01_BubbleDemo {public static void main(String[] args) {/*冒泡排序:核心思想:1,相邻的元素两两比较,大的放右边,小的放左边。2,第一轮比较完毕之后,最大值就已经确定,第二轮可以少循环一次,后面以此类推。3,如果数组中有n个数据,总共我们只要执行n-1轮的代码就可以。*///1.定义数组int[] arr = {2, 4, 5, 3, 1};//2.利用冒泡排序将数组中的数据变成 1 2 3 4 5//外循环:表示我要执行多少轮。 如果有n个数据,那么执行n - 1 轮for (int i = 0; i < arr.length - 1; i++) {//内循环:每一轮中我如何比较数据并找到当前的最大值//-1:为了防止索引越界//-i:提高效率,每一轮执行的次数应该比上一轮少一次。for (int j = 0; j < arr.length - 1 - i; j++) {//i 依次表示数组中的每一个索引:0 1 2 3 4if(arr[j] > arr[j + 1]){int temp = arr[j];arr[j] = arr[j + 1];arr[j + 1] = temp;}}}printArr(arr);}private static void printArr(int[] arr) {//3.遍历数组for (int i = 0; i < arr.length; i++) {System.out.print(arr[i] + " ");}System.out.println();}
}

2. 选择排序

2.1 算法步骤

  1. 从0索引开始,跟后面的元素一一比较
  2. 小的放前面,大的放后面
  3. 第一次循环结束后,最小的数据已经确定
  4. 第二次循环从1索引开始以此类推
  5. 第三轮循环从2索引开始以此类推
  6. 第四轮循环从3索引开始以此类推。

2.2 动图演示

在这里插入图片描述

public class A02_SelectionDemo {public static void main(String[] args) {/*选择排序:1,从0索引开始,跟后面的元素一一比较。2,小的放前面,大的放后面。3,第一次循环结束后,最小的数据已经确定。4,第二次循环从1索引开始以此类推。*///1.定义数组int[] arr = {2, 4, 5, 3, 1};//2.利用选择排序让数组变成 1 2 3 4 5/* //第一轮://从0索引开始,跟后面的元素一一比较。for (int i = 0 + 1; i < arr.length; i++) {//拿着0索引跟后面的数据进行比较if(arr[0] > arr[i]){int temp = arr[0];arr[0] = arr[i];arr[i] = temp;}}*///最终代码://外循环:几轮//i:表示这一轮中,我拿着哪个索引上的数据跟后面的数据进行比较并交换for (int i = 0; i < arr.length -1; i++) {//内循环:每一轮我要干什么事情?//拿着i跟i后面的数据进行比较交换for (int j = i + 1; j < arr.length; j++) {if(arr[i] > arr[j]){int temp = arr[i];arr[i] = arr[j];arr[j] = temp;}}}printArr(arr);}private static void printArr(int[] arr) {//3.遍历数组for (int i = 0; i < arr.length; i++) {System.out.print(arr[i] + " ");}System.out.println();}}

3. 插入排序

插入排序的代码实现虽然没有冒泡排序和选择排序那么简单粗暴,但它的原理应该是最容易理解的了,因为只要打过扑克牌的人都应该能够秒懂。插入排序是一种最简单直观的排序算法,它的工作原理是通过创建有序序列和无序序列,然后再遍历无序序列得到里面每一个数字,把每一个数字插入到有序序列中正确的位置。

插入排序在插入的时候,有优化算法,在遍历有序序列找正确位置时,可以采取二分查找

3.1 算法步骤

将0索引的元素到N索引的元素看做是有序的,把N+1索引的元素到最后一个当成是无序的。

遍历无序的数据,将遍历到的元素插入有序序列中适当的位置,如遇到相同数据,插在后面。

N的范围:0~最大索引

3.2 动图演示

在这里插入图片描述

package com.itheima.mysort;public class A03_InsertDemo {public static void main(String[] args) {/*插入排序:将0索引的元素到N索引的元素看做是有序的,把N+1索引的元素到最后一个当成是无序的。遍历无序的数据,将遍历到的元素插入有序序列中适当的位置,如遇到相同数据,插在后面。N的范围:0~最大索引*/int[] arr = {3, 44, 38, 5, 47, 15, 36, 26, 27, 2, 46, 4, 19, 50, 48};//1.找到无序的哪一组数组是从哪个索引开始的。  2int startIndex = -1;for (int i = 0; i < arr.length; i++) {if(arr[i] > arr[i + 1]){startIndex = i + 1;break;}}//2.遍历从startIndex开始到最后一个元素,依次得到无序的哪一组数据中的每一个元素for (int i = startIndex; i < arr.length; i++) {//问题:如何把遍历到的数据,插入到前面有序的这一组当中//记录当前要插入数据的索引int j = i;while(j > 0 && arr[j] < arr[j - 1]){//交换位置int temp = arr[j];arr[j] = arr[j - 1];arr[j - 1] = temp;j--;}}printArr(arr);}private static void printArr(int[] arr) {//3.遍历数组for (int i = 0; i < arr.length; i++) {System.out.print(arr[i] + " ");}System.out.println();}}

4. 快速排序

快速排序是由东尼·霍尔所发展的一种排序算法。

快速排序又是一种分而治之思想在排序算法上的典型应用。

快速排序的名字起的是简单粗暴,因为一听到这个名字你就知道它存在的意义,就是快,而且效率高!

它是处理大数据最快的排序算法之一了。

4.1 算法步骤

  1. 从数列中挑出一个元素,一般都是左边第一个数字,称为 “基准数”;
  2. 创建两个指针,一个从前往后走,一个从后往前走。
  3. 先执行后面的指针,找出第一个比基准数小的数字
  4. 再执行前面的指针,找出第一个比基准数大的数字
  5. 交换两个指针指向的数字
  6. 直到两个指针相遇
  7. 将基准数跟指针指向位置的数字交换位置,称之为:基准数归位。
  8. 第一轮结束之后,基准数左边的数字都是比基准数小的,基准数右边的数字都是比基准数大的。
  9. 把基准数左边看做一个序列,把基准数右边看做一个序列,按照刚刚的规则递归排序

4.2 动图演示

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

package com.itheima.mysort;import java.util.Arrays;public class A05_QuickSortDemo {public static void main(String[] args) {System.out.println(Integer.MAX_VALUE);System.out.println(Integer.MIN_VALUE);/*快速排序:第一轮:以0索引的数字为基准数,确定基准数在数组中正确的位置。比基准数小的全部在左边,比基准数大的全部在右边。后面以此类推。*/int[] arr = {1,1, 6, 2, 7, 9, 3, 4, 5, 1,10, 8};//int[] arr = new int[1000000];/* Random r = new Random();for (int i = 0; i < arr.length; i++) {arr[i] = r.nextInt();}*/long start = System.currentTimeMillis();quickSort(arr, 0, arr.length - 1);long end = System.currentTimeMillis();System.out.println(end - start);//149System.out.println(Arrays.toString(arr));//课堂练习://我们可以利用相同的办法去测试一下,选择排序,冒泡排序以及插入排序运行的效率//得到一个结论:快速排序真的非常快。/* for (int i = 0; i < arr.length; i++) {System.out.print(arr[i] + " ");}*/}/**   参数一:我们要排序的数组*   参数二:要排序数组的起始索引*   参数三:要排序数组的结束索引* */public static void quickSort(int[] arr, int i, int j) {//定义两个变量记录要查找的范围int start = i;int end = j;if(start > end){//递归的出口return;}//记录基准数int baseNumber = arr[i];//利用循环找到要交换的数字while(start != end){//利用end,从后往前开始找,找比基准数小的数字//int[] arr = {1, 6, 2, 7, 9, 3, 4, 5, 10, 8};while(true){if(end <= start || arr[end] < baseNumber){break;}end--;}System.out.println(end);//利用start,从前往后找,找比基准数大的数字while(true){if(end <= start || arr[start] > baseNumber){break;}start++;}//把end和start指向的元素进行交换int temp = arr[start];arr[start] = arr[end];arr[end] = temp;}//当start和end指向了同一个元素的时候,那么上面的循环就会结束//表示已经找到了基准数在数组中应存入的位置//基准数归位//就是拿着这个范围中的第一个数字,跟start指向的元素进行交换int temp = arr[i];arr[i] = arr[start];arr[start] = temp;//确定6左边的范围,重复刚刚所做的事情quickSort(arr,i,start - 1);//确定6右边的范围,重复刚刚所做的事情quickSort(arr,start + 1,j);}
}

}
end–;
}
System.out.println(end);
//利用start,从前往后找,找比基准数大的数字
while(true){
if(end <= start || arr[start] > baseNumber){
break;
}
start++;
}

        //把end和start指向的元素进行交换int temp = arr[start];arr[start] = arr[end];arr[end] = temp;}//当start和end指向了同一个元素的时候,那么上面的循环就会结束//表示已经找到了基准数在数组中应存入的位置//基准数归位//就是拿着这个范围中的第一个数字,跟start指向的元素进行交换int temp = arr[i];arr[i] = arr[start];arr[start] = temp;//确定6左边的范围,重复刚刚所做的事情quickSort(arr,i,start - 1);//确定6右边的范围,重复刚刚所做的事情quickSort(arr,start + 1,j);}

}

其他排序方式待更新~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/80958.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C++学习】继承

目录 一、继承的概念及定义 1、继承的概念 2、继承的定义 2.1 定义格式 2.2 继承关系和访问限定符 2.3 继承基类成员访问方式的变化 二、基类和派生类对象赋值转换 三、继承中的作用域 四、派生类的默认成员函数 五、继承与友元 六、继承与静态成员 七、复杂的菱形…

SpringMvc第五战-【SpringMvcJSR303和拦截器】

前言&#xff1a; 小编阐述了springmvc 中的文件下载&#xff0c;以及jrebel的使用和文件下载以及多文件下载! 在本次小编将会介绍JSR303的概念&#xff0c;应用场景和在具体实例的使用&#xff1b;和拦截器的应用 一.JSR303的介绍 1.什么是JSR303&#xff1f; JSR是Java S…

Aztec的隐私抽象:在尊重EVM合约开发习惯的情况下实现智能合约隐私

1. 引言 Aztec的架构&#xff0c;不同于当前“通过EVM兼容执行环境”所实现的区块链水平扩容趋势。Aztec内部笑称其构建的为首个非zkEVM协议。 Aztec专注于实现&#xff1a; 成为理解和需要智能合约隐私的开发者的终极解决方案。 Aztec为开发者提供构建隐私优先app所需的网…

【微信小程序开发】宠物预约医疗项目实战-环境配置与Vant UI集成

第一章 宠物预约医疗项目实战-环境配置与Vant UI集成 文章目录 前言一、Vant UI是什么&#xff1f;二、使用步骤2.1 安装 node.js2.2 通过 npm 安装vant2.3 修改 app.json2.4 修改 project.config.json2.5 构建 npm 包2.6 使用组件全局引入和局部引入全局引入局部引入 前言 Va…

基于Java+SpringBoot+Vue+uniapp点餐小程序(亮点:协同过滤算法、会员系统,购物车结算、在线聊天)

校园点餐小程序 一、前言二、我的优势2.1 自己的网站2.2 自己的小程序&#xff08;小蔡coding&#xff09;2.3 有保障的售后2.4 福利 三、开发环境与技术3.1 MySQL数据库3.2 Vue前端技术3.3 Spring Boot框架3.4 微信小程序 四、功能设计4.1 系统功能结构设计4.2 主要功能描述 五…

SpringBoot整合Flowable

1. 配置 &#xff08;1&#xff09; 引入maven依赖 <dependency><groupId>org.flowable</groupId><artifactId>flowable-spring-boot-starter</artifactId><version>6.7.2</version></dependency><!-- MySQL连接 -->&l…

MySQL--MySQL索引事务

事务的概念 事务指逻辑上的一组操作&#xff0c;组成这组操作的各个单元&#xff0c;要么全部成功&#xff0c;要么全部失败。 在不同的环境中&#xff0c;都可以有事务。对应在数据库中&#xff0c;就是数据库事务。 使用 &#xff08;1&#xff09;开启事务&#xff1a;start…

什么是接口自动化?为什么要做?和怎么做接口自动化?

服务端接口测试介绍 什么是服务端&#xff1f; 一般所说的服务端是指为用户在 APP 或 PC 使用的互联网功能提供数据服务的背后的一切。以天猫精灵智能音箱系列的产品链路为例&#xff0c;服务端便是网关&#xff08;包括网关在内&#xff09;之后的链路。 什么是接口&#xf…

【自然语言处理】【大模型】RWKV:基于RNN的LLM

相关博客 【自然语言处理】【大模型】RWKV&#xff1a;基于RNN的LLM 【自然语言处理】【大模型】CodeGen&#xff1a;一个用于多轮程序合成的代码大语言模型 【自然语言处理】【大模型】CodeGeeX&#xff1a;用于代码生成的多语言预训练模型 【自然语言处理】【大模型】LaMDA&a…

深入网络底层,了解Linux系统收发网络数据包的过程、原理、流程,附图文说明

深入网络底层&#xff0c;了解Linux系统收发网络数据包的过程、原理、流程&#xff0c;附图文说明。 Linux 服务器收到网络数据包&#xff0c;需要经过哪些处理&#xff0c;一步步将数据传给应用进程的呢&#xff1f;应用进程发送数据包时&#xff0c;Linux 又是如何操作将数据…

android studio platform使用体验分享(as无法跳转c/c++等native源码的福音,强烈推荐)

hi&#xff0c;粉丝朋友们&#xff1a; 大家好&#xff01;这些天粉丝朋友们分享了一下Android Studio for Platform 这个最新的google开发的阅读aosp源码的工具&#xff0c;特别适合做原生系统开发。具体官方介绍如下地址&#xff1a; 参考链接&#xff1a;https://developer.…

react的状态管理简单钩子方法

1.recoil useProvider文件: import { atom, useRecoilState } from recoil;const initState atom({key: initState,default: {state: [],}, })// 将业务逻辑拆分到一个单独文件中&#xff0c;方便进行状态管理 export interface StateProps {id: number;text: string;isFini…

异地远程访问本地SQL Server数据库【无公网IP内网穿透】

文章目录 1. 前言2. SeaFile云盘设置2.1 Owncould的安装环境设置2.2 SeaFile下载安装2.3 SeaFile的配置 3. cpolar内网穿透3.1 Cpolar下载安装3.2 Cpolar的注册3.3 Cpolar云端设置3.4 Cpolar本地设置 4. 公网访问测试5. 结语 1. 前言 现在我们身边的只能设备越来越多&#xff…

文心一言 VS 讯飞星火 VS chatgpt (94)-- 算法导论9.2 3题

三、用go语言&#xff0c;给出 RANDOMIZED-SELECT的一个基于循环的版本。 文心一言&#xff1a; 在循环中实现 RANDOMIZED-SELECT 的一个版本可以如下所示。这个版本使用 Go 语言编写&#xff0c;利用随机化来选择一个元素&#xff0c;并在循环中不断地调整选择的元素&#x…

【探索Linux】—— 强大的命令行工具 P.8(进程地址空间)

阅读导航 前言一、内存空间分布二、什么是进程地址空间1. 概念2. 进程地址空间的组成 三、进程地址空间的设计原理1. 基本原理2. 虚拟地址空间 概念 大小和范围 作用 虚拟地址空间的优点 3. 页表 四、为什么要有地址空间五、总结温馨提示 前言 前面我们讲了C语言的基础知识&am…

HTTP协议(超级详细)

HTTP协议介绍 基本介绍&#xff1a; HTTP&#xff1a;超文本传输协议&#xff0c;是从万维网服务器传输超文本到本地浏览器的传送协议HTTP是一种应用层协议&#xff0c;是基于TCP/IP通信协议来传送数据的&#xff0c;其中 HTTP1.0、HTTP1.1、HTTP2.0 均为 TCP 实现&#xff0…

vue组件库开发,webpack打包,发布npm

做一个像elment-ui一样的vue组件库 那多好啊&#xff01;这是我前几年就想做的 但webpack真的太难用&#xff0c;也许是我功力不够 今天看到一个视频&#xff0c;早上6-13点&#xff0c;终于实现了&#xff0c;呜呜 感谢视频的分享-来龙去脉-大家可以看这个视频&#xff1a;htt…

【C语言】【数据存储】用%u打印char类型?用char存128?

1.题目一&#xff1a; #include <stdio.h> int main() {char a -128;printf("%u\n",a);return 0; }%u 是打印无符号整型 解题逻辑&#xff1a; 1. 原反补互换&#xff0c;截断 -128 原码&#xff1a;10000000…10000000 补码&#xff1a;11111111…10000000…

uniapp项目实践总结(十六)自定义下拉刷新组件

导语&#xff1a;在日常的开发过程中&#xff0c;我们经常遇到下拉刷新的场景&#xff0c;很方便的刷新游览的内容&#xff0c;在此我也实现了一个下拉刷新的自定义组件。 目录 准备工作原理分析组件实现实战演练内置刷新案例展示 准备工作 在components新建一个q-pull文件夹…

LVS负载均衡群集(NAT模式、IP隧道模式、DR模式)

目录 一、集群 1.1 含义即特点 1.2 群集的类型 1.3 LVS 的三种工作模式&#xff1a; 1.4 LVS 调度算法 1.5 负载均衡群集的结构 1.6 ipvsadm 工具 二、NAT模式 LVS-NAT模式配置步骤&#xff1a; 实例&#xff1a; 配置NFS服务器192.168.20.100 配置web1服务器192.168…