【从浅学到熟知Linux】冯诺依曼体系结构及进程概念详谈!

在这里插入图片描述

🏠关于专栏:Linux的浅学到熟知专栏用于记录Linux系统编程、网络编程等内容。
🎯每天努力一点点,技术变化看得见

文章目录

  • 冯诺依曼体系结构
  • 操作系统
    • 如何理解管理
    • 操作系统概念
    • 设计操作系统目的
    • 系统调用和库函数概念
  • 进程
    • 基本概念
    • 描述进程-PCB
    • 组织进程
    • 查看进程
    • 通过系统调用获取进程标识符
    • 通过系统调用创建进程


冯诺依曼体系结构

我们常见的计算机,像我们日常使用的笔记本、台式机;我们不常见的计算机,如服务器,大部分都遵循冯诺依曼体系结构。

在讨论冯诺依曼体系结构前,我们先来了解一下该结构涉及的5个部分:输入设备、输出设备、存储器、运算器、控制器。(下面给出了这5个组件的举例)

组件名称举例
输入设备键盘、摄像头、话筒、磁盘、网卡…
输出设备显示器、音响、磁盘、网卡…
存储器内存…
运算器算术运算单元、逻辑运算单元…
控制器无举例(负责协调外部就绪事件,如将数据拷贝到内存等)

下图描述的就是冯诺依曼体系结构,其中外部设备(输入、输出设备)在进行数据交互时,都是直接与存储器直接交互。而CPU从存储器直接获取数据或存储数据。在程序需要访问外部设备时,CPU才会与外部设备有间接交互。
在这里插入图片描述
为什么CPU不直接与外部设备直接交互呢?大家可能知道木桶效应,整个木桶的盛水量取决于最低的那块木板。在计算机体系结构中也是这样的。

CPU具有非常快的计算速度,而外部设备的速度太慢了。如果CPU直接与外部设备交互,则CPU在需要获取或输出设备时均要等待外部设备,整机效率取决于外部设备的处理速度

在这里插入图片描述
如果我们让外部设备与存储器直接交互,让CPU与存储器直接交互。在CPU进行计算时,存储器可以与多个输入设备交互,当CPU需要数据时,直接从内存中获取即可;如果CPU需要写入数据,则将数据给存储器,再由存储器与输出设备交互即可。这样一来,整机的效率就取决于存储器的处理速度。大大提高了计算机的处理效率。

因此,我们可以得出如下结论:↓↓↓

  1. CPU读取数据(数据+代码),都是从内存中读取。站在数据的角度,CPU不和外设直接交互
  2. CPU要处理数据,需要将外设中的数据加载到内存。站在数据的角度,外设直接只和内存打交道

★ps:在冯诺依曼体系结构中,当某个进程需要访问外设时,CPU并不会一直等待外设,而是使用中断的方式将其从CPU上换下来,由其他进程执行。该程序到对应外设上等待外设处理完成后,再向CPU的控制器发送中断信号,表明自己已经处理完成,可以回到CPU上运行。再由控制器来相应的信号、外部事件等。

★ps:计算机中的寄存器的存取效率比磁盘等存储设备速度快,为什么不将整机的存储设备均换成寄存器材质呢?
一方面,寄存器、内存设备掉电易失(没电就没办法存储数据),而磁盘、磁带等设备为磁性存储介质,可以在没电的情况下继续保存出局;另一方面,寄存器、内存价格昂贵,我们当前的计算机普遍是8G左右内存,计算机的价格就已经较为昂贵了,如果计算机将几百G的磁盘换成内存,则一台计算机的价格将比现在的计算机贵上百倍。

★ps:什么叫做IO?从外部设备将数据拷贝到内存就是Input,从内存将数据拷贝到外部设备就是Output,这就是IO。

★ps:为什么程序要运行,必须先将程序加载到内存?这其实就是冯诺依曼体系结构决定的。硬件设备为了提高整机效率,规定了CPU只能从内存读取数据及指令。因此,软件执行必须遵守硬件规定,必须将待执行程序加载到内存。

【举例说明】如果在厦门,要给远在哈尔滨的朋友发送一条消息。

此时我需要使用使用键盘(外部设备)打字,键盘数据被写入存储器中;CPU从存储器中获取键盘数据,确定要怎么传输之后,将CPU处理后的数据放到存储器中;再由存储器将该数据传给网卡;我的网卡与对方的网卡交互之后,对方网卡将获取的数据写入存储器;对方存储器再将数据传给CPU,CPU对传来的数据进行解码等操作,再将解码后的数据存入存储器;由存储器负责将数据传给显示器进行显示。
在这里插入图片描述

★关于冯诺依曼体系结构需要强调以下几点:

  1. 这里的存储器指的就是内存,不考虑缓存的情况
  2. 这里的CPU能且只能对内存进行读写,不能访问外设(输入、输出设备)
  3. 外设(输入、输出设备)要输入或输出数据,只能写入内存或从内存中读取
  4. 在冯诺依曼体系中,所有设备只能和内存打交道(以存储器为中心)

操作系统

如何理解管理

例子1:学校管理
大学里校长是怎么管理成千上午的学生的呢?我们知道,大学里面有辅导员、班长。他们协助校长管理学生,校长不直接与学生打交道,而是通过辅导员和班长来管理学生。

管理学生的本质是对学生数据做管理,也就是对学生的学号、姓名、成绩等等信息做管理。因而,我们可以使用一个结构体来定义一个学生类型,再使用顺序表或者链表来组织学生信息。这种思想叫做“先描述,再组织”。当校长发现某个数据有问题时,他并不是直接找到这个学生,而是让辅导员处理这个数据问题。

从这可知,管理者和被管理者可以不执行交互(沟通),拿到被管理者的核心数据(用于进行管理决策)才是最重要的。

在这里插入图片描述
知识点:操作系统如何管理外设
在计算机有个大boss——操作系统,它不直接与外部设备打交道,而是通过驱动程序管理外部设备。操作系统实际管理的就是一组外设的结构体数据的管理(即对数据进行增删查改)。
在这里插入图片描述
例子2:银行提供服务
生活中,我们需要到银行存取钱的时候,都需要到柜台窗口办理业务;再由业务人员与内部金库做交互。为什么不能让用户直接进入金库呢?因为,银行无法甄别哪些人是坏人。为了管理方便,直接拒绝用户进入金库,而提供了柜台这种形式的服务。这种方式不仅能给用户提供服务,还保证了银行的安全。
在这里插入图片描述

知识点:操作系统提供接口式服务
操作系统与银行类似,它既要给用户提供服务,但又担心用户的非法操作。因此,操作系统提供了一个又一个的接口(函数),这样既能给用户提供服务,又能保证操作系统的安全。

★ps:Linux是使用C语言实现的,因此Linux的系统调用本质就是使用C语言实现的函数。

银行的组织结构与操作系统相似。行长借助安保、保洁、技术员等管理了银行里的各项资源;而操作系统借助驱动程序管理计算机上的各项资源(软硬件资源)。为了给用户提供服务,他们都使用了接口式服务,但这种接口式服务对于某些用户来说,仍然使用不便。因而,银行就有了协助老年用户的引导员;而操作系统就有了图形化界面、shell外壳、第三方库来为用户提供便捷的服务。此外,操作系统上,还有各种使用第三方库、系统调用等实现的应用程序(如抖音、淘宝等),为用户提供更加便捷的服务。

在这里插入图片描述

操作系统概念

任何计算机系统都包含一个基本的程序集合,称为操作系统(OS)。它给用户提供了一个稳定、安全、简单的执行环境。

笼统的理解,操作系统包括:①内核(进程管理、内存管理、文件管理、驱动管理)②其他程序(例如:库函数、shell程序等)

在整个计算机软硬件架构中,操作系统的定位是:一款纯正的“搞管理”的软件

设计操作系统目的

  1. 与硬件交互,管理所有的软硬件资源
  2. 为用户程序(应用程序)提供一个良好的执行环境

下图是操作系统在整个计算机体系中起着承上启下的作用。操作系统对下通过驱动程序管理各种硬件;对上为用户提供各种系统接口,对各个软件进行管理。
在这里插入图片描述
★ps:计算机管理硬件:①描述起来,用struct结构体 ②组织起来,用链表或其他高效的数据结构

系统调用和库函数概念

在开发角度,操作系统对外会表现为一个整体,但是会暴露自己的部分接口,供上层开发使用,这部分由操作系统提供的接口,叫做系统调用

系统调用在使用上,功能比较基础,对用户的要求相对也比较高,所以,有心的开发者可以对部分系统调用进行适度封装,从而形成库,有了库,就很有利于更上层用户或者开发者进行二次开发

进程

其实,我们启动一个软件本质就是启动一个进程。在Linux系统上,运行一条命令,如"ls -al",其实就是在系统层面创建了一个进程。因而我们可以得到如下概念↓↓↓

基本概念

●课本概念:程序的一个执行实例,正在执行的程序等。
●内核观点:担当分配系统资源(CPU时间、内存)的实体。

Linux是可以同时加载多个程序的,也就是说,Linux是可以在系统中同时存在大量的进程的。那么,Linux系统就必须对这些进程进行管理。Linux系统是如何管理大量的进程的呢?答案是:先描述,再组织

对于进程来说,它包含各种属性数据,因此需要一个结构来存储它,即PCB(进程控制块)

计算机中存在大量的可执行文件,我们双击可执行文件后,本质是将可执行文件从磁盘加载到内存中,该可执行文件中包含了程序的代码和数据。但操作系统中有大量运行的程序,为了管理好这些程序,需要使用PCB结构体将各个运行的程序(进程)的属性数据进行保存。这样操作系统才知道该进程已经运行到哪一行,是否已经执行结束等。

★ps:在操作系统中,会维护一个运行队列run_queue,该队列上链接着等待CPU资源的进程的PCB。当CPU空闲时,则会从run_queue中选择一个进程到CPU中执行,这就是进程调度。
在这里插入图片描述
由此,我们可以知道:进程=对应的代码和数据+进程对应的PCB结构体

描述进程-PCB

●进程信息被放在一个叫做进程控制块的数据结构中,可以理解为进程属性的集合。
●课本上将其称之为PCB,Linux操作系统下的PCB就是task_struct。

在Linux中描述进程的结构体叫做task_struct。task_struct是Linux内核的一种数据结构,它会被装载到内存里并且包含着进程的信息。下表是对task_struct中存储内容的分类↓↓↓

存储项概述具体描述
标识符描述进程的唯一标识符,用来区别其他进程
状态任务状态、退出代码、退出信号等
优先级相对于其他进程的优先级
程序计数器程序中即将被执行的下一条指令的地址
内存指针包括程序代码和进程相关数据的指针,还有和其他程序共享的内存块的指针
上下文数据进程执行时处理器的寄存器中的数据
I/O状态信息包括显示的I/O请求,分配给进程的I/O设备和被进程使用的文件列表
记账信息可能包括处理器时间总和,使用的时钟数总和,时间限制,记账号等
其他信息——

针对于上表中的上下文数据,这里给出一个生活示例进行说明:

大学生参军复学例子
大学里有不少同学会选择参军,如果小明他大二上学期打算参军。此时他可以直接去参军,不和学校内的学生信息管理机构上报吗?如果小明他直接参军,而没有在校报备,等他1年后回来,由于他全科挂科、旷课,被开除了,他就需要从大一重新开始读。

显然,小明去参军是需要和学校报备的,此时学生信息管理机构会将小明的信息存储起来。小明参完军是不是应该跟学校再报备一次,并将学生信息恢复为正常在读状态呢?那是当然。

这里的上下文就等同于小明的在校的信息(上到大二年级,等同于程序执行到第2行代码),像这种离开时将自己的信息保存封存下来,回来后再将信息恢复,这样的操作称为上下文切换(上下文保存及上下文恢复)。当小明回到学校,继续读大二年纪,而不是从大一重新开始读;就等同于程序回到CPU不是从头运行,而是从上次运行停止处继续向下运行。

组织进程

进程结构可以在内核代码中找到它,所有运行在Linux操作系统里的进程都以task_struct链表的形式存储在内核内。

查看进程

进程的信息可以通过/proc系统文件夹查看。我们通过"ls"命令,可以看到/proc目录下有许多带数字的文件夹,这些数字就是进程id,用于唯一标识一个进程。
在这里插入图片描述
如要获取id为26126的进程信息,我们只需要进入名为26126的目录中查看即可。使用"ls -al"查看目录内的详细内容(这些都是该进程的相关信息),其中,cwd是当前进程的工作目录,exe是当前进程对应的可执行文件的存储位置。如果创建了一个新的进程,则会在/etc目录下创建一个名称与该进程pid相同的目录,目录中保存该进程的相关属性、数据及代码;若终止该进程,则对应的目录会被操作系统自动删除。
在这里插入图片描述
还可以使用top命令查看进程的相关信息,其中PID就是进程号(进程id)。
在这里插入图片描述
除了上述两种方法,我们还可以使用ps命令配合选项查看进程的相关信息。↓↓↓
在这里插入图片描述
示例演示
下面我们编写如下代码,并将它编译运行(可执行文件名为test)。

#include <stdio.h>
#include <unistd.h>int main()
{while(1){sleep(1);}return 0;
}

执行./test程序后,我们再执行ps axj | head - 1 && ps axj | grep test,可以查看到执行该程序的进程信息↓↓↓
在这里插入图片描述
★ps:如果想终止当前在执行的程序,可以使用ctrl+C,或使用kill -9 [进程id]来结束对应程序。

通过系统调用获取进程标识符

我们可以调用getpid获取当前进程的标识符(进程id),调用getppid获取当前进程的父进程的标识符(父进程id)。在使用该接口时,需要包含sys/types和unistd两个头文件。
在这里插入图片描述
下面代码为getpid及getppid的使用示例,运行结果在代码下方↓↓↓

#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>int main()
{while(1){printf("my pid is %d\n", getpid());printf("my parent's id is %d\n", getppid());sleep(1);}return 0;
}

在这里插入图片描述
我们可以使用ps命令来验证一下上面的pid和ppid是否是当前进程和它的父进程的id↓↓↓
在这里插入图片描述
getpid可以获得当前进程的pid,getppid确实可以获得当前进程的父进程。但当前的父进程是哪个程序呢??我们使用ps -p [进程pid]获取来获取对应pid的进程信息,我们可以发现,该进程的父进程是bash。
在这里插入图片描述
为什么父进程是bash呢?bash就是当前与我们进行交互的命令行,为了防止bash执行时该程序崩溃退出,导致整个命令行无法使用。bash会创建子进程,让该子进程执行该程序,即使子进程崩溃退出,也不会影响bash。

通过系统调用创建进程

可以使用fork创建进程。如果创建进程成功,则会给父进程返回子进程id,给子进程返回0;如果创建失败,则会给父进程返回-1。
在这里插入图片描述
下面代码演示了如何创建子进程(程序执行结果如代码下方图片所示)↓↓↓

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>int main()
{pid_t id = fork();if(id < 0)//创建子进程失败{perror("fork");exit(1);}else if(id == 0)//子进程执行{printf("I am child process, my pid is %d, my ppid is %d\n", getpid(), getppid());exit(0);}else//父进程执行{printf("I am parent process, my pid is %d\n", getpid());}return 0;
}

在这里插入图片描述
父、子进程是代码共享的,但由于fork之后,父子进程获得id值不同,因此子进程执行id == 0的分支,而父进程执行的是else分支。

创建子进程本质上,操作系统上就多了一个新的进程,因此操作系统需要给子进程分配一个PCB结构体,并给它一个唯一的p进程id。

★ps:为什么给子进程返回0,给父进程返回子进程的pid?父进程:子进程=1:n,父进程有多个子进程,为了方便子进程管理、标识指定的子进程,需要让fork给父进程返回子进程的pid,当父进程能区分不同的子进程。

🎈欢迎进入从浅学到熟知Linux专栏,查看更多文章。
如果上述内容有任何问题,欢迎在下方留言区指正b( ̄▽ ̄)d

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/808360.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

移位寄存器

移位寄存器是如何工作的&#xff1f; 移位寄存器按照移位方向可分为左移位寄存器、右移位寄存器、双向移位寄存器。图11-15所示为用D触发器构成的4位左移位寄存器。待存数码由触发器F0的输入端D0输入&#xff0c;在移位脉冲作用下&#xff0c;可将数码从高位到低位向左逐步移入…

基于springboot+vue实现的艺术水平考级报名管理系统

作者主页&#xff1a;Java码库 主营内容&#xff1a;SpringBoot、Vue、SSM、HLMT、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、小程序、安卓app等设计与开发。 收藏点赞不迷路 关注作者有好处 文末获取源码 技术选型 【后端】&#xff1a;Java 【框架】&#xff1a;spring…

信息收集笔记

1 简介 渗透的本质是信息收集 信息收集也叫做资产收集 信息收集是渗透测试的前期主要工作&#xff0c;是非常重要的环节&#xff0c;收集足够多的信息才能方便接下来的测试&#xff0c;信息收集主要是收集网站的域名信息、子域名信息、目标网站信息、目标网站真实IP、敏感/目…

2024.4.8Morris中序遍历(线索二叉树)学习

这次博主在学习完知识点和代码之后&#xff0c;准备对这个知识重新进行整理总结。站在一个初学者的角度来看待这个知识点&#xff0c;在他人的讲解基础上加一点点自己的理解&#xff0c;并记录下来。以加深自己的理解&#xff0c;并且希望能够帮助到你。博主是一个初学者&#…

HeidiSQL下载安装使用

天行健&#xff0c;君子以自强不息&#xff1b;地势坤&#xff0c;君子以厚德载物。 每个人都有惰性&#xff0c;但不断学习是好好生活的根本&#xff0c;共勉&#xff01; 文章均为学习整理笔记&#xff0c;分享记录为主&#xff0c;如有错误请指正&#xff0c;共同学习进步。…

互联网需要做安全防护吗?

互联网需要做安全防护&#xff0c;因为网络攻击的风险随时存在。一旦遭受大规模攻击&#xff0c;企业很可能会受到严重影响&#xff0c;甚至会造成巨大的经济损失和品牌声誉受损。因此&#xff0c;建议企业在安全防护方面做好以下几点&#xff1a; 加强网络安全意识教育&#x…

设备基础命令,路由基础

直连路由 静态路由 动态路由 根据路由器学习路由信息、生成并维护路由表的方法包括直连路由(Direct)、静态路由(Static)和动态路由(Dynamic)。直连路由&#xff1a;路由器接口所连接的子网的路由方式称为直连路由&#xff1b;非直连路由&#xff1a;通过路由协议从别的路由器…

2024年4月12日 十二生肖 今日运势

小运播报&#xff1a;2024年4月12日&#xff0c;星期五&#xff0c;农历三月初四 &#xff08;甲辰年戊辰月丙午日&#xff09;&#xff0c;法定工作日。 红榜生肖&#xff1a;羊、狗、虎 需要注意&#xff1a;牛、马、鼠 喜神方位&#xff1a;西南方 财神方位&#xff1a;…

“安全边际大师”卡拉曼2023年珍贵访谈:如果视市场为狂躁的交易对手,那你就能利用反复无常来获利

“对于那些被广泛跟踪的股票&#xff0c;如果你不比其他人更聪明&#xff0c;且你的观点与别人无异&#xff0c;你是赚不到钱的。” “足够大的折价也许可以抵消你对它缺乏最深刻的认识。” “拓宽投资视野不仅诱人&#xff0c;也可能价值连城。” “如果向市场寻求答案&…

欢迎加入PenPad Season 2 ,获得勋章以及海量 Scroll 生态权益

PenPad 是 Scroll 生态中的首个 LaunchPad 平台&#xff0c;该平台继承了 Scroll 生态的技术优势&#xff0c;具备包括隐私在内的系列特点&#xff0c;同时且也被认为是 Scroll 生态最重要的价值入口之一。Penpad 与 Scroll 官方始终保持着合作&#xff0c;同时该项目自启动以来…

基于Springboot的网上商品订单转手系统(有报告)。Javaee项目,springboot项目。

演示视频&#xff1a; 基于Springboot的网上商品订单转手系统&#xff08;有报告&#xff09;。Javaee项目&#xff0c;springboot项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系…

无人机概述

1、中英文对照表 中文中文简称英文全称英文简称无人驾驶飞机无人机Unmanned Aerial VehicleUAV无人机自组织网络无人机网络flying Ad-Hoc networkFANET 2、相关概念 2.1鲁棒性 网络鲁棒性是指网络系统在面对随机故障、蓄意攻击或其他异常情况时&#xff0c;能够保持其基本功…

智慧工地管理平台源码:提供专业落地的解决方案

目录 智慧工地平台功能简介 一、劳务实名制系统 二、智能塔吊可视系统 三、视频监控&#xff08;含安全行为识别&#xff09; 四、环境监测&#xff08;联动自动喷淋&#xff09; 五、起重机械管控&#xff08;含吊钩可视化&#xff09; 六、升降电梯智能管控 七、高支…

鸿蒙让我赚到了第一笔桶金!年薪33.6W!

抢人&#xff01;抢人&#xff01;抢人&#xff01; 所谓抢滩鸿蒙&#xff0c;人才先行。鸿蒙系统火力全开后&#xff0c;抢人已成鸿蒙市场的主题词&#xff01; 智联招聘数据显示&#xff0c;春节后首周&#xff0c;鸿蒙相关职位数同比增长163%&#xff0c;是去年同期的2.6倍…

【C++算法】线性DP详解:数字三角形、最长上升子序列、最长公共子序列、最长公共子串、字符串编辑距离

文章目录 1&#xff09;数字三角形1&#xff1a;顺推2&#xff1a;逆推 2&#xff09;最长上升子序列1&#xff1a;线性DP做法2&#xff1a;二分优化 3&#xff09;最长公共子序列4&#xff09;最长公共子串5&#xff09;字符串编辑距离 1&#xff09;数字三角形 1&#xff1a…

股票高胜率的交易法则是什么?

股票交易中的高胜率交易法则并非一成不变&#xff0c;而是根据市场状况、个人投资风格和经验等多种因素综合而定的。以下是一些有助于提升交易胜率的法则和策略&#xff1a; 1.趋势跟踪法则&#xff1a;在股票交易中&#xff0c;趋势跟踪是一种有效的策略。通过观察大盘和个股…

Hadoop安装部署-NameNode高可用版

Hadoop分布式文件系统支持NameNode的高可用性&#xff0c;本文主要描述NameNode多节点高可用性的安装部署。 如上所示&#xff0c;Hadoop分布式文件系统部署了NameNode的Master主节点以及NameNode的Slave副节点&#xff0c;当Master主节点发生故障变得不可用时&#xff0c;ZooK…

llama-factory SFT系列教程 (一),大模型 API 部署与使用

文章目录 背景简介难点 前置条件1. 大模型 api 部署下一步阅读 背景 本来今天没有计划学 llama-factory&#xff0c;逐步跟着github的文档走&#xff0c;发现这框架确实挺方便&#xff0c;逐渐掌握了一些。 最近想使用 SFT 微调大模型&#xff0c;llama-factory 是使用非常广泛…

python之文件操作与管理

1、文件操作 通过open&#xff08;&#xff09;操作&#xff0c;来创建文件对象&#xff0c;下面是open&#xff08;&#xff09;函数语法如下&#xff1a; open&#xff08;file,mode r,buffering -1 , encoding None ,errors None , newline None,closefd True,opener …

Python(3):条件语句+循环语句+逻辑运算符+符号优先级

文章目录 一、if语句1.if语句2.if 和 elif区别3.三元表达式 二、循环语句1.range函数和循环结束关键字2.while循环3.for循环 三、逻辑运算符1.and语句2.or语句3.not语句4.逻辑运算法的优先级 四、python运算符优先级和结合性一览表 一、if语句 1.if语句 1.if单分支语句 格式…