Linux内核中常用的C语言技巧

Linux内核采用的是GCC编译器,GCC编译器除了支持ANSI C,还支持GNU C。在Linux内核中,许多地方都使用了GNU C语言的扩展特性,如typeof、__attribute__、__aligned、__builtin_等,这些都是GNU C语言的特性。

typeof

下面是比较两个数大小返回大值的经典宏写法:

#define max(a,b) ((a) > (b) ? (a) : (b))

如果a传入i++,b传入j++,那么这个比较大小就会出错。例如:

#define max(a,b) ((a)>(b)?(a):(b))int x = 1, y = 2;
printf("max=%d\n", max(x++, y++));
printf("x = %d, y = %d\n", x, y);

输出结果:max=3,x=2,y=4。这是错误的结果,正常我们希望的是max(1,2),返回max=2。如何修改这个宏呢?

在GNU C语言中,如果知道a和b的类型,可以在宏里面定义一个变量,将a, b赋值给变量,然后再比较。例如:

#define max(a,b) ({   \int _a = (a);   \ int _b = (b);   \_a > _b ? _a : _b; }) 

如果不知道具体的数据类型,可以使用typeof类转换宏,Linux内核中的例子:

#define max(a, b) ({        \typeof(a) _a = (a);      \typeof(b) _b = (b);      \(void) (&_a == &_b);   \_a > _b ? _a : _b; })

typeof(a) _a = (a):定义一个a类型的变量_a,将a赋值给_a

typeof(b) _b = (b):定义一个b类型的变量_b,将b赋值给_b

(void) (&_a == &_b):判断两个数的类型是否相同,如果不相同,会抛出一个警告。因为a和b的类型不一样,其指针类型也会不一样,两个不一样的指针类型进行比较操作,会抛出一个编译警告。

typeof用法举例:

//typeof的参数可以是表达式或类型//参数是类型
typeof(int *) a,b;//等价于:int *a,*b;//参数是表达式
int foo();
typeof(foo()) var;//声明了int类型的var变量,因为表达式foo()是int类型的。由于表达式不会被执行,所以不会调用foo函数。

零长数组

零长数组,又叫柔性数组。而它的作用主要就是为了满足需要变长度的结构体,因此有时也习惯性地称为变长数组

用法:在一个结构体的后, 申明一个长度为0的数组, 就可以使得这个结构体是可变长的

对于编译器来说, 此时长度为0的数组并不占用空间, 因为数组名本身不占空间, 它只是一个偏移量, 数组名这个符号本身代表了一个不可修改的地址常量

结构体中定义零长数组:

<mm/percpu.c>
struct pcpu_chunk {struct list_head  list;unsigned long    populated[];  /* 变长数组 */
};

数据结构后一个元素被定义为零长度数组,不占结构体空间。这样,我们可以根据对象大小动态地分配结构的大小。

struct line {int length;char contents[];
};struct line *thisline = malloc(sizeof(struct line) + this_length);
thisline->length = this_length;

如上例所示,struct line数据结构定义了一个int length变量和一个变长数组contents[0],这个struct line数据结构的大小只包含int类型的大小,不包含contents的大小,也就是**sizeof (struct line) = sizeof (int)**。

创建结构体对象时,可根据实际的需要指定这个可变长数组的长度,并分配相应的空间,如上述实例代码分配了this_length 字节的内存,并且可以通过contents[index]来访问第index个地址的数据。

case范围

GNU C语言支持指定一个case的范围作为一个标签,如:

case low ...high:
case 'A' ...'Z':

这里low到high表示一个区间范围,在ASCII字符代码中也非常有用。下面是Linux内核中的代码例子。

<arch/x86/platform/uv/tlb_uv.c>static int local_atoi(const char *name){int val = ;for (;; name++) {switch (*name) {case '0' ...'9':val = 10*val+(*name-'0');break;default:return val;}}
}

另外,还可以用整形数来表示范围,但是这里需要注意在“...”两边有空格,否则编译会出错。

<drivers/usb/gadget/udc/at91_udc.c>static int at91sam9261_udc_init(struct at91_udc *udc){for (i = ; i < NUM_ENDPOINTS; i++) {ep = &udc->ep[i];switch (i) {case :ep->maxpacket = 8;break;case 1 ... 3:ep->maxpacket = 64;break;case 4 ... 5:ep->maxpacket = 256;break;}}
}

标号元素

GNU C语言可以通过指定索引或结构体成员名来初始化,不必按照原来的固定顺序进行初始化。

结构体成员的初始化在 Linux 内核中经常使用,如在设备驱动中初始化file_operations数据结构:

<drivers/char/mem.c>
static const struct file_operations zero_fops = {.llseek      = zero_lseek,.read        = new_sync_read,.write       = write_zero,.read_iter     = read_iter_zero,.aio_write     = aio_write_zero,.mmap        = mmap_zero,
};

如上述代码中的zero_fops的成员llseek初始化为zero_lseek函数,read成员初始化为new_sync_read函数,依次类推。当file_operations数据结构的定义发生变化时,这种初始化方法依然能保证已知元素的正确性,对于未初始化成员的值为0或者NULL

可变参数宏

在GNU C语言中,宏可以接受可变数目的参数,主要用在输出函数里。例如:

<include/linux/printk.h>
#define pr_debug(fmt, ...) \
dynamic_pr_debug(fmt, ##__VA_ARGS__)

“...”代表一个可以变化的参数表,“__VA_ARGS__”是编译器保留字段,预处理时把参数传递给宏。当宏的调用展开时,实际参数就传递给dynamic_pr_debug函数了。

函数属性

GNU C语言允许声明函数属性(Function Attribute)变量属性(Variable Attribute)类型属性(Type Attribute),以便编译器进行特定方面的优化和更仔细的代码检查。特殊属性语法格式为:

__attribute__ ((attribute-list))

attribute-list的定义有很多,如noreturnformat以及const等。此外,还可以定义一些和处理器体系结构相关的函数属性,如ARM体系结构中可以定义interruptisr等属性。

下面是Linux内核中使用format属性的一个例子。

<drivers/staging/lustru/include/linux/libcfs/>
int libcfs_debug_msg(struct libcfs_debug_msg_data *msgdata,const char *format1, ...)__attribute__ ((format (printf, 2, 3)));

libcfs_debug_msg()函数里声明了一个format函数属性,它会告诉编译器按照printf的参数表的格式规则对该函数参数进行检查数字2表示第二个参数为格式化字符串,数字3表示参数“...”里的个参数在函数参数总数中排在第几个

noreturn属性告诉编译器,该函数从不返回值,这可以消除一些不必要的警告信息。例如以下函数,函数不会返回:

void __attribute__((noreturn)) die(void);

const 属性会让编译器只调用该函数一次,以后再调用时只需要返回次结果即可,从而提高效率。

static inline u32 __attribute_const__ read_cpuid_cachetype(void){return read_cpuid(CTR_EL0);
}

Linux还有一些其他的函数属性,被定义在compiler-gcc.h文件中。

#define __pure           __attribute__((pure))
#define __aligned(x)        __attribute__((aligned(x)))
#define __printf(a, b)      __attribute__((format(printf, a, b)))
#define __scanf(a, b)       __attribute__((format(scanf, a, b)))
#define noinline          __attribute__((noinline))
#define __attribute_const__   __attribute__((__const__))
#define __maybe_unused      __attribute__((unused))
#define __always_unused      __attribute__((unused))

变量属性和类型属性

变量属性可以对变量或结构体成员进行属性设置。类型属性常见的属性有alignmentpackedsections等。

alignment属性规定变量或者结构体成员的小对齐格式,以字节为单位。

struct qib_user_info {__u32 spu_userversion;__u64 spu_base_info;
} __aligned(8);

在这个例子中,编译器以8字节对齐的方式来分配qib_user_info这个数据结构。

packed属性可以使变量或者结构体成员使用小的对齐方式,对变量是以字节对齐,对域是以位对齐

struct test{char a;int x[2] __attribute__ ((packed));
};

x成员使用了packed属性,它会存储在变量a后面,所以这个结构体一共占用9字节

内建函数

内建函数以“_builtin_”作为函数名前缀。下面介绍Linux内核常用的一些内建函数。

__builtin_constant_p(x):判断x是否在编译时就可以被确定为常量。如果x为常量,该函数返回1,否则返回0。

__builtin_expect(exp, c)

#define __swab16(x)        \
(__builtin_constant_p((__u16)(x)) ?  \
___constant_swab16(x) :      \
__fswab16(x))__builtin_expect(exp, c)

__builtin_expect(exp, c):这里的意思是exp==c的概率很大,用来引导GCC编译器进行条件分支预测。开发人员知道可能执行哪个分支,并将有可能执行的分支告诉编译器,让编译器优化指令序列,使指令尽可能地顺序执行,从而提高CPU预取指令的正确率

Linux内核中经常见到likely()unlikely()函数,本质也是__builtin_expect()

#define LIKELY(x) __builtin_expect(!!(x), 1) //x很可能为真
#define UNLIKELY(x) __builtin_expect(!!(x), 0) //x很可能为假

__builtin_prefetch(const void *addr, int rw, int locality)主动进行数据预取,在使用地址addr的值之前就把其值加载到cache中,减少读取的延迟,从而提高性能

该函数可以接受3个参数:

  • 个参数addr表示要预取数据的地址;

  • 第二个参数rw表示读写属性,1表示可写,0表示只读;

  • 第三个参数locality表示数据在cache中的时间局部性,其中0表示读取完addr的之后不用保留在cache中,而1~3表示时间局部性逐渐增强。如下面的prefetch()prefetchw()函数的实现。

<include/linux/prefetch.h>
#define prefetch(x) __builtin_prefetch(x)
#define prefetchw(x) __builtin_prefetch(x,1)

下面是使用prefetch()函数进行优化的一个例子。

<mm/page_alloc.c>
void __init __free_pages_bootmem(struct page *page, unsigned int order){unsigned int nr_pages = 1 << order;struct page *p = page;unsigned int loop;prefetchw(p);for (loop = ; loop < (nr_pages - 1); loop++, p++) {prefetchw(p + 1);__ClearPageReserved(p);set_page_count(p, );}…
}

在处理struct page数据之前,通过prefetchw()预取到cache中,从而提升性能

asmlinkage

在标准C语言中,函数的形参在实际传入参数时会涉及参数存放问题。

对于x86架构,函数参数局部变量被一起分配到函数的局部堆栈里。x86中对asmlinkage的定义:

<arch/x86/include/asm/linkage.h>
#define asmlinkage CPP_ASMLINKAGE __attribute__((regparm(0)))

attribute((regparm(0))):告诉编译器该函数不需要通过任何寄存器来传递参数,只通过堆栈来传递

对于ARM来说,函数参数的传递有一套ATPCS标准,即通过寄存器来传递。ARM中的R0~R4寄存器存放传入参数,当参数超过5个时,多余的参数被存放在局部堆栈中。所以,ARM平台没有定义asmlinkage

<include/linux/linkage.h>
#define asmlinkage CPP_ASMLINKAGE
#define asmlinkage CPP_ASMLINKAGE

UL

在Linux内核代码中,我们经常会看到一些数字的定义使用了UL后缀修饰。

数字常量会被隐形定义为int类型,两个int类型相加的结果可能会发生溢出。

因此使用UL强制把int类型数据转换为unsigned long类型,这是为了保证运算过程不会因为int的位数不同而导致溢出。

  • 1 :表示有符号整型数字1

  • UL:表示无符号长整型数字1

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/807685.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何使用Jellyfin+cpolar低成本部署私人影音平台并实现无公网IP远程访问

文章目录 1. 前言2. Jellyfin服务网站搭建2.1. Jellyfin下载和安装2.2. Jellyfin网页测试 3.本地网页发布3.1 cpolar的安装和注册3.2 Cpolar云端设置3.3 Cpolar本地设置 4.公网访问测试5. 结语 1. 前言 随着移动智能设备的普及&#xff0c;各种各样的使用需求也被开发出来&…

AI大模型之ChatGPT科普(深度好文)

目录 训练ChatGPT分几步&#xff1f; 如何炼成ChatGPT&#xff1f; 如何微调ChatGPT? 如何强化ChatGPT? 如何调教ChatGPT? AI思维链是什么&#xff1f; GPT背后的黑科技Transformer是什么&#xff1f; Transformer在计算机视觉上CV最佳作品&#xff1f; 数字时代&am…

【MySQL】游标和触发器

一、游标 1.1 什么是游标 1、使用背景 在我们使用update或者delete操作数据时&#xff0c;一般都会根据条件语句查询出很多条记录组成的数据集&#xff0c;然后一次性批量操作 假设我们想要对这个结果集中的数据 一行一行的进行操作&#xff0c;比如某个条件满足后&#xff…

Lora 串口透传开发 5

1 简介 串口转usb、转wifi等很多应用 2 设计原理 2.1 设计需求 1将LoRa终端定义成两种角色:Master和Slave 2一个模块发送任意字节长度&#xff08;小于128Byte&#xff09;数据&#xff0c;另一模块都可以接收到 3PC机上通过串口调试助手实现接收和发送 4终端在LCD屏幕上显…

智慧公厕升级为多功能城市智慧驿站,助力智慧城市发展

在现代城市的建设中&#xff0c;公共厕所作为基础必备的民生设施&#xff0c;一直是城市管理的重要组成部分。随着科技的不断发展&#xff0c;智慧公厕应运而生&#xff0c;成为了公共厕所信息化、数字化、智慧化的应用解决方案。而近年来&#xff0c;智慧公厕也进行了升级发展…

损失函数:BCE Loss(二元交叉熵损失函数)、Dice Loss(Dice相似系数损失函数)

损失函数&#xff1a;BCE Loss&#xff08;二元交叉熵损失函数&#xff09;、Dice Loss&#xff08;Dice相似系数损失函数&#xff09; 前言相关介绍BCE Loss&#xff08;二元交叉熵损失函数&#xff09;代码实例直接计算函数计算 Dice Loss&#xff08;Dice相似系数损失函数&a…

分布式 SpringCloudAlibaba、Feign与RabbitMQ实现MySQL到ES数据同步

文章目录 ⛄引言一、思路分析⛅实现方式⚡框架选择 二、实现数据同步⌚需求分析⏰搭建环境⚡核心源码 三、测试四、源码获取⛵小结 ⛄引言 本文参考黑马 分布式Elastic search Elasticsearch是一款非常强大的开源搜索引擎&#xff0c;具备非常多强大功能&#xff0c;可以帮助…

如何使用Android手机通过JuiceSSH远程访问本地Linux服务器

文章目录 1. Linux安装cpolar2. 创建公网SSH连接地址3. JuiceSSH公网远程连接4. 固定连接SSH公网地址5. SSH固定地址连接测试 处于内网的虚拟机如何被外网访问呢?如何手机就能访问虚拟机呢? cpolarJuiceSSH 实现手机端远程连接Linux虚拟机(内网穿透,手机端连接Linux虚拟机) …

Python上解决TypeError: not all arguments converted during string formatting错误

目录 背景尝试1: pymysql模块的escape_string方法尝试2: 修改pandas.read_excel引擎尝试3: 回退xlrd版本总结 背景 在Linux上部署的时候, 使用pandas模块读取Excel, 然后pymysql模块入库, 结果发生了错误 Traceback (most recent call last):File "/usr/local/lib64/pyth…

3月谷歌应用上架/下架情况,上架难度加大,开发者面临新挑战?

在3月份&#xff0c;Google play应用商店应用上架和下架出现了前所未有的情况。很多开发者表示&#xff0c;上架难度简直是“地狱”级别。 下图是3月份美国、巴西、印度、中国香港的下架数量的折线图&#xff0c;根据市场数据监测&#xff0c;可以清晰地看到3月份中旬之后&…

DESTINATION MOON 香港站回顾|聆听 Web3 创新者的未来对话

创新者汇聚 Web3 行业&#xff0c;如何才能在生态、技术、投资的发展新风口把握机遇&#xff1f;「TinTin Destination Moon」香港站活动于 4 月 6 日下午如期举行&#xff01;Web3AI 的融合发展之道在哪&#xff1f;ETF 时代的投资逻辑有哪些&#xff1f;区块链未来的关键究竟…

使用HTML+CSS实现一个简单的登录页面

整个项目使用文件&#xff1a; HTML代码部分&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><ti…

如何理解单片机 pwm 控制的基本原理?

单片机PWM&#xff08;脉宽调制&#xff09;控制的基本原理&#xff0c;简而言之&#xff0c;就是通过改变脉冲信号的宽度&#xff08;占空比&#xff09;来控制模拟电路。这涉及到单片机生成一系列脉冲信号&#xff0c;每个脉冲信号的高电平持续时间和整个周期的比值&#xff…

计算机视觉 | 基于二值图像数字矩阵的距离变换算法

Hi&#xff0c;大家好&#xff0c;我是半亩花海。本实验基于 OpenCV 实现了二值图像数字矩阵的距离变换算法。首先生成一个 480x480 的黑色背景图像&#xff08;定义黑色为0&#xff0c;白色为1&#xff09;&#xff0c;在其中随机选择了三个白色像素点作为距离变换的原点&…

MicroPython with LVGL

官方博客:Micropython LittlevGL | LVGL’s Blog github:GitHub - lvgl/lv_micropython: Micropython bindings to LVGL for Embedded devices, Unix and JavaScript 官方在线模拟器:https://sim.lvgl.io/(需要电脑能访问外网才能使用) 电脑不能访问外网会出现以下错误&…

JVM内存区域

类加载 将class文件加载到方法区中 验证&#xff1a;验证待加载的class文件是否正确&#xff0c;比如验证文件的格式 准备&#xff1a;为static变量分配内存并赋零值 解析&#xff1a;将符号引用解析为直接引用 类加载器 双亲委派 总结就是&#xff0c;向上查找有没有加载过…

面试算法-170-二叉树的最大深度

题目 给定一个二叉树 root &#xff0c;返回其最大深度。 二叉树的 最大深度 是指从根节点到最远叶子节点的最长路径上的节点数。 示例 1&#xff1a; 输入&#xff1a;root [3,9,20,null,null,15,7] 输出&#xff1a;3 解 class Solution {public int maxDepth(TreeNod…

参与 PenPad Season 2 获得勋章,还有海量 Scroll 生态稀缺权益

PenPad 是 Scroll 生态中的首个 LaunchPad 平台&#xff0c;该平台继承了 Scroll 生态的技术优势&#xff0c;具备包括隐私在内的系列特点&#xff0c;同时且也被认为是 Scroll 生态最重要的价值入口之一。Penpad 与 Scroll 官方始终保持着合作&#xff0c;同时该项目自启动以来…

车载摄像头图像及画质增强解决方案

车载摄像头作为汽车智能化、安全化的关键组件&#xff0c;其图像质量直接影响着驾驶者的视觉感知和行车安全。美摄科技凭借其在图像处理和AI算法领域的深厚积累&#xff0c;推出了一款专为车载摄像头打造的图像及画质增强解决方案&#xff0c;助力企业实现摄像头画面的实时优化…

PKI:构建数字安全基石的关键技术

在数字化时代&#xff0c;网络安全已成为我们日常生活和工作的重要组成部分。为了确保数据的完整性、机密性和身份的真实性&#xff0c;公钥基础设施&#xff08;Public Key Infrastructure&#xff0c;简称PKI&#xff09;技术应运而生&#xff0c;为构建数字安全基石提供了重…