基于ES-EKF的LiDAR/GNSS/IMU传感器融合轨迹估计(附项目源码)

基于改进EKF的LiDAR/GNSS/IMU传感器融合轨迹估计(附项目源码)

  • 算法概述
    • Prediction
    • Correction
    • ES-EKF算法
    • 融合算法实现轨迹估计
    • 实验结果

最近在研究传感器融合,看到一个很好的开源项目,适合小白学习,为以后做传感器融合、SLAM、自动驾驶和室内定位等方向打下基础。

算法概述

题目:基于改进扩展卡尔曼滤波(Error State-EKF)的LiDAR/GNSS/IMU的传感器融合轨迹估计
关键词:改进扩展卡尔曼滤波(Error State Extended Kalman Filter,ES-EFK)、传感器融合、轨迹估计、激光雷达(LiDAR)、卫星导航(GNSS)、惯性测量元件(IMU)

算法的overview如下图所示:
在这里插入图片描述
整体而言,就是使用LiDAR、GNSS和IMU的数据根据ES-EKF进行融合迭代估计轨迹。在本项目中,IMU的采样频率较高,而GNSS和LiDAR的采样频率较低。该算法可以分为两个部分:预测(Prediction)和改正(Correction)。下面让我们一起看看这个算法。

Prediction

Prediction阶段是基于小车IMU测量的运动模型进行预测轨迹,然后再结合GNSS或LiDAR的数据用EKF融合改正预测的轨迹。

下面的小车的参数,包括位置pk、速度vk和姿态qk。
在这里插入图片描述
运动方程以IMU的数据作为输入,包括四元数转旋转矩阵Cns,比力加速度fk(由加速度计测量),角速度Wk(由陀螺仪测量)。这里需要注意的是,处理IMU数据的时候一般都用四元数,避免用欧拉角带来的死锁问题。
在这里插入图片描述

Correction

Correction阶段就是用GNSS或者LiDAR观测到的数据对估计的位置进行改正。

GNSS的观测方程:
在这里插入图片描述
LiDAR的观测方程:
在这里插入图片描述

ES-EKF算法

Error-state Extended Kalman Filter(ES-EKF)是一种改进的扩展卡尔曼滤波算法,基本思想就是将State分为两部分Nominal State和Error State。它用于状态估计问题,特别是对于非线性系统的状态估计问题,例如在机器人定位、导航和控制方面的应用。
x代表真值, x_hat代表Nominal State,占比较大, delta_x代表Error State,占比较小。

线性化如下:
在这里插入图片描述

ES-EKF试图通过引入误差状态来改进EKF的性能。它的核心思想是,通过对状态误差进行线性化而不是对状态本身进行线性化,可以更好地处理非线性性质,并提高滤波器的稳健性和准确性。相比起一般的EKF算法,优势在于:(1)Error State的线性化比Nominal State更好;(2)对于三维空间的数据处理较好,使用旋转的情况,因此很适合本项目的3D LiDAR数据。

详细推导过程可以参考该文章:ES-EKF算法推导

融合算法实现轨迹估计

1.使用IMU数据更新运动模型
在这里插入图片描述
2.不确定度计算和传播
在这里插入图片描述
3. 使用GNSS或LiDAR改正
3.1 计算卡尔曼增益
在这里插入图片描述
3.2 更新Error State
在这里插入图片描述
3.3 改正状态预测
在这里插入图片描述
3.4 计算改正方差
在这里插入图片描述

实验结果

该项目中,已经提供了预处理好的IMU、GNSS和LiDAR数据,参考轨迹和预测轨迹的对比实验结果如下:

在这里插入图片描述
位置和姿态矩阵误差:(蓝色实线是误差,红色虚线是不确定度)
在这里插入图片描述

以上就是这个小项目的主要算法介绍和实验结果,非常适合小白学习。最后,附上原作者的项目链接

我个人改进后的项目链接

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/803672.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

.net 6 集成NLog

.net 6 webapi项目集成NLog 上代码step 1 添加nugetstep 2 添加支持step 3 添加配置文件 结束 上代码 step 1 添加nuget 添加nuget 包 Roc step 2 添加支持 修改program.cs var builder WebApplication.CreateBuilder(args); // 添加NLog日志支持 builder.AddRocNLog();ste…

贪心算法|860.柠檬水找零

力扣题目链接 class Solution { public:bool lemonadeChange(vector<int>& bills) {int five 0, ten 0, twenty 0;for (int bill : bills) {// 情况一if (bill 5) five;// 情况二if (bill 10) {if (five < 0) return false;ten;five--;}// 情况三if (bill …

Lvs+keepalived+nginx搭建高可用负载均衡集群,爱了爱了

检查 最后启动nginx服务 135配置虚拟网卡 检查 最后启动nginx服务 Nginx.conf配置如下 关闭132的keepalived服务后 浏览器能正常访问 132在keepalived配置中加入脚本 脚本内容 132清除ipvsadm中的规则,vip不见 133收到vip 自我介绍一下&#xff0c;小编13年上海交大毕业&…

使用idea运行程序,发现控制台的中文出现乱码

修改UTF-8发现没有效果&#xff0c;寻找.idea文件夹的encodings.xml文件&#xff0c;将里面的UTF-8全部变成GBK.

了解Vue中的 computed 计算属性

目录 1. computed计算属性介绍和基础语法 1.1. 概念 1.2. 语法 2. “计算属性”和“方法”的对比 2.1. computed 计算属性 2.1.1. 作用 2.1.2. 语法 2.2. methods 方法 2.2.1. 作用 2.2.2. 语法 2.2.3. 缓存特性&#xff08;提升性能&#xff09; 3. computed 计算…

云原生:5分钟了解一下Kubernetes是什么

在当今的云计算时代&#xff0c;容器化技术变得越来越重要。它能够帮助开发者更高效地部署和管理应用程序。而Kubernetes&#xff0c;作为容器编排领域的领军者&#xff0c;正逐渐成为企业构建和管理云原生应用的核心工具。 近期将持续为大家分享Kubernetes相关知识&#xff…

sql基础语法

sql基础语法 1. 什么是MySQL1.1 RDBMS 特点1.2 sql分类1.3 数据类型1.4 适应MySQL 2. 代码顺序与后台执行顺序2.1 代码撰写顺序2.2 后台执行顺序 3. 基础查询4. 条件检索5. 分组6. 多表查询6.1 子查询&#xff08;几乎不用&#xff09;6.2 连接查询 7. 常用函数 前同事培训过相…

GitHub 仓库 (repository) Branch - SSH clone URL - Clone in Desktop - Download ZIP

GitHub 仓库 [repository] Branch - SSH clone URL - Clone in Desktop - Download ZIP 1. Branch2. SSH clone URL3. Clone in Desktop4. Download ZIPReferences 1. Branch 显示当前分支的名称。从这里可以切换仓库内分支&#xff0c;查看其他分支的文件。 2. SSH clo…

FreeGPT3.5 开源软件

GPT-3.5不需要付费&#xff0c;也不需要注册用户&#xff0c;可以直接使用了&#xff0c;官方彻底开放了API接口。 该API政策一放开&#xff0c;GitHub很快就已经出现了一个开源项目FreeGPT35&#xff0c;可以自动生成key调用GPT3.5的API接口&#xff0c;再也用不着注册账号和申…

服务器数据恢复—V7000存储raid5数据恢复案例

服务器数据恢复环境&#xff1a; P740AIXSybaseV7000存储阵列柜&#xff0c;阵列柜上有12块SAS机械硬盘&#xff08;包括1块热备盘&#xff09;。 服务器故障&#xff1a; 管理员在日常巡检过程中发现阵列柜中有一块磁盘发生故障&#xff0c;于是更换磁盘并同步数据&#xff0…

快速熟悉torchdiffeq用法,从数理逻辑到完整案例【第二部分】

本系列文章板块规划 提示&#xff1a;以下内容仅为个人学习感悟&#xff0c;无法保证完全的正确和权威&#xff0c;大家酌情食用谢谢。 第一部分 torchdiffeq背后的数理逻辑 第二部分 torchdiffeq的基本用法 第三部分 trochdiffeq的升级用法 第四部分 torchdifffeq的案例和代码…

C++11:function包装器

包装器&#xff0c;体现了C11中的封装性&#xff0c;包装器可以应用于&#xff1a;函数指针&#xff0c;仿函数&#xff0c;lambda 而包装器function的出现刚好也弥补了上述三种语法的不足之处 函数指针写起来较为复杂&#xff0c;而仿函数之间类型不同&#xff0c;lambda则在…

数学建模笔记(10)整数规划和0-1规划

前由 显然通关次数不能是小数&#xff0c;这就涉及到了整数问题。 定义 例题

最新mysql8.3 保姆级 主从复制搭建教程

mysql 主从复制搭建 服务器配置表 机器ip操作系统主机192.168.31.25华为openEuler-22.03-LTS-SP3从机192.168.31.184华为openEuler-22.03-LTS-SP3从机192.168.31.228华为openEuler-22.03-LTS-SP3 1、在3台机器上安装独立的 mysql 1.1 创建myql文件夹用来存放mysql包 mkdir…

python-可视化篇-turtle-画爱心

文章目录 原效果替换关键字5为8&#xff0c;看看效果改下颜色 原效果 import turtle as tt.color(red,pink) t.begin_fill() t.width(5) t.left(135) t.fd(100) t.right(180) t.circle(50,-180) t.left(90) t.circle(50,-180) t.right(180) t.fd(100) t.pu() t.goto(50,-30) t…

【用户案例】太美医疗基于Apache DolphinScheduler的应用实践

大家好&#xff0c;我叫杨佳豪&#xff0c;来自于太美医疗。今天我为大家分享的是Apache DolphinScheduler在太美医疗的应用实践。今天的分享主要分为四个部分&#xff1a; 使用历程及选择理由稳定性的改造功能定制与自动化部署运维巡检与优化 使用历程及选择理由 公司介绍 …

尝试在手机上运行google 最新开源的gpt模型 gemma

Gemma介绍 Gemma简介 Gemma是谷歌于2024年2月21日发布的一系列轻量级、最先进的开放语言模型&#xff0c;使用了与创建Gemini模型相同的研究和技术。由Google DeepMind和Google其他团队共同开发。 Gemma提供两种尺寸的模型权重&#xff1a;2B和7B。每种尺寸都带有经过预训练&a…

【iOS ARKit】AR Quick Look 概述

为更好地传播共享 AR 体验&#xff0c;苹果公司引入了 AR Quick Look&#xff0c;并在iOS 12及以上版本系统中深度集成了 AR Quick Look&#xff0c;因此可以通过iMessage、Mail、Notes、 News、 Safari 和 Files 直接体验 AR&#xff0c;AR Quick Look提供了在 iPhone 和iPad …

排序算法,插入排序

插入排序是什么 插入排序&#xff08;Insertion Sort&#xff09;&#xff0c;一般也被称为直接插入排序。对于少量元素的排序&#xff0c;它是一个有效、简单的算法 其主要的实现思想是将数据按照一定的顺序一个一个的插入到有序的表中&#xff0c;最终得到的序列就是已经排…

隐私计算实训营第九讲-隐语多方安全计算在安全核对的行业实践

隐私计算实训营第九讲-隐语多方安全计算在安全核对的行业实践 文章目录 隐私计算实训营第九讲-隐语多方安全计算在安全核对的行业实践1.业务背景&#xff1a;安全核对产生的土壤1.1相关政策出台1.2 数据差异的来源 2.产品方案&#xff1a;从试点到规模化的路3.技术共建&#xf…