Linux锁的使用

一、临界资源与临界区

多线程会共享例如全局变量等资源,我们把会被多个执行流访问的资源称为临界资源,我们是通过代码访问临界资源的,而我们访问临界资源的那部分代码称为临界区。

实现一个抢票系统

只有一个线程抢票时

#include <iostream>
#include <vector>
#include <unistd.h>#include "Thread.hpp"int num = 10000; std::string GetThreadName()
{static int num = 1;char name[64];snprintf(name, sizeof(name), "thread-%d", num++);return name;
}void Ticket(std::string name)
{while(true){if(num > 0){usleep(1000);printf("%s get ticket: %d\n", name.c_str(), num);num--;}else{break;}}
}int main()
{std::string name1 = GetThreadName();Thread<std::string> t1(name1, Ticket, name1);t1.Start();t1.Join();return 0;
}

正常输出,最终票数为0时退出。

但是当我们启动多个线程同时抢票时,num就是临界资源,使用num的那部分代码就是临界区

#include <iostream>
#include <vector>
#include <unistd.h>#include "Thread.hpp"int num = 10000; std::string GetThreadName()
{static int num = 1;char name[64];snprintf(name, sizeof(name), "thread-%d", num++);return name;
}void Ticket(std::string name)
{while(true){if(num > 0){usleep(1000);printf("%s get ticket: %d\n", name.c_str(), num);num--;}else{break;}}
}int main()
{std::string name1 = GetThreadName();Thread<std::string> t1(name1, Ticket, name1);std::string name2 = GetThreadName();Thread<std::string> t2(name2, Ticket, name2);std::string name3 = GetThreadName();Thread<std::string> t3(name3, Ticket, name3);std::string name4 = GetThreadName();Thread<std::string> t4(name4, Ticket, name4);t1.Start();t2.Start();t3.Start();t4.Start();t1.Join();t2.Join();t3.Join();t4.Join();return 0;
}

可以看到出现了0和负数的票数,这是因为当票数只剩1时,有多个执行流在同一时间通过了if判断,使得能继续进行减票操作。

vs下自减操作的反汇编,分为三步:先从内存拿数据,再把数据减1,最后把数据拷贝到内存

多个执行流同时访问临界资源例如自减操作,由于--操作不是原子性的(我们认为一条汇编指令是原子性的,是不会被中断的。但--操作转为汇编指令后,需要多条指令才能完成),当--操作执行到一半切换到其他线程会导致数据不一致的问题。这种情况下需要通过锁把临界区保护起来,每次只让一个执行流访问临界资源,避免数据不一致问题。

互斥:任何时刻,互斥保证有且只有一个执行流进入临界区,访问临界资源,通常对临界资源起保护作用。

原子性:不会被任何调度机制打断的操作,该操作只有两态,要么完成,要么未完成。

二、使用锁的方法

1.创建锁

如果定义一个全局的锁,直接使用pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER用宏初始化。

如果定义一个局部锁,要使用pthread_mutex_init方法创建,参数attr设为nullptr

2.加锁解锁

使用pthread_mutex_lock加锁,传递锁的地址,

解锁用pthread_mutex_unlock

当我们使用锁后,就能保证每次只有一个执行流能访问临界资源。

#include <iostream>
#include <vector>
#include <unistd.h>#include "Thread.hpp"int num = 10000;
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER; //定义一个全局锁std::string GetThreadName()
{static int num = 1;char name[64];snprintf(name, sizeof(name), "thread-%d", num++);return name;
}void Ticket(std::string name)
{while(true){pthread_mutex_lock(&mutex); //加锁if(num > 0){usleep(1000);printf("%s get ticket: %d\n", name.c_str(), num);num--;pthread_mutex_unlock(&mutex); //解锁}else{pthread_mutex_unlock(&mutex); //解锁break;}}
}int main()
{std::string name1 = GetThreadName();Thread<std::string> t1(name1, Ticket, name1);std::string name2 = GetThreadName();Thread<std::string> t2(name2, Ticket, name2);std::string name3 = GetThreadName();Thread<std::string> t3(name3, Ticket, name3);std::string name4 = GetThreadName();Thread<std::string> t4(name4, Ticket, name4);t1.Start();t2.Start();t3.Start();t4.Start();t1.Join();t2.Join();t3.Join();t4.Join();return 0;
}

结果正常,但是速度慢了很多,因为要不断申请锁和释放锁

加锁解锁的过程是安全的

三、可重入和线程安全

1.概念

线程安全:多个线程并发同一段代码时,不会出现不同的结果。常见对全局变量或者静态变量进行操作, 并且没有锁保护的情况下,会出现该问题。

重入:同一个函数被不同的执行流调用,当前一个流程还没有执行完,就有其他的执行流再次进入,我们称之为重入。一个函数在重入的情况下,运行结果不会出现任何不同或者任何问题,则该函数被称为可重入函数,否则,是不可重入函数。

2.常见的线程不安全的情况

1.不保护共享变量的函数

2.函数状态随着被调用,状态发生变化的函数

3.返回指向静态变量指针的函数

4.调用线程不安全函数的函数

3.常见的线程安全的情况

1.调用了malloc/free函数,因为malloc函数是用全局链表来管理堆的

2.调用了标准I/O库函数,标准I/O库的很多实现都以不可重入的方式使用全局数据结构

3.可重入函数体内使用了静态的数据结构

4.常见可重入的情况

1.不使用全局变量或静态变量

2.不使用用malloc或者new开辟出的空间

3.不调用不可重入函数不返回静态或全局数据,所有数据都有函数的调用者提供

4.使用本地数据,或者通过制作全局数据的本地拷贝来保护全局数据

5.可重入与线程安全联系

1.函数是可重入的,那就是线程安全的

2.函数是不可重入的,那就不能由多个线程使用,有可能引发线程安全问题

3.如果一个函数中有全局变量,那么这个函数既不是线程安全也不是可重入的。

6.可重入与线程安全区别

1.可重入函数是线程安全函数的一种

2.线程安全不一定是可重入的,而可重入函数则一定是线程安全的。

3.如果将对临界资源的访问加上锁,则这个函数是线程安全的,但如果这个重入函数若锁还未释放则会产生 死锁,因此是不可重入的。

四、死锁

死锁是指在一组进程中的各个进程均占有不会释放的资源,但因互相申请被其他进程所站用不会释放的资源而处于的一种永久等待状态。

1.死锁四个必要条件

1.互斥条件:一个资源每次只能被一个执行流使用

2.请求与保持条件:一个执行流因请求资源而阻塞时,对已获得的资源保持不放

3.不剥夺条件: 一个执行流已获得的资源,在末使用完之前,不能强行剥夺

4.循环等待条件: 若干执行流之间形成一种头尾相接的循环等待资源的关系

2.避免死锁

1.破坏死锁的四个必要条件

2.加锁顺序一致

3.避免锁未释放的场景

4.资源一次性分配

3.避免死锁算法

1.死锁检测算法

2.银行家算法

一个锁会造成死锁吗?

答案是会的,当一个线程申请完一个锁,访问完临界资源后,接下来该释放锁了,但是代码却写成了加锁,这就会导致死锁问题。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/802633.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Docker速成:新手变专家!

Docker介绍 容器历史 1、Chroot Jail 就是常见的chroot命令的用法。它在1979年的时候就出现了&#xff0c;被认为是最早的容器化技术之一。它可以把一个进程的文件系统隔离起来。 2、The FreeBSD Jail &#xff08;监狱&#xff09;实现了操作系统级别的虚拟化&#xff0c;他…

外包干了25天,技术退步明显.......

先说一下自己的情况&#xff0c;大专生&#xff0c;18年通过校招进入杭州某软件公司&#xff0c;干了接近4年的功能测试&#xff0c;今年年初&#xff0c;感觉自己不能够在这样下去了&#xff0c;长时间呆在一个舒适的环境会让一个人堕落! 而我已经在一个企业干了四年的功能测…

Jeesite开源项目中ECharts折线图MarkPoint无法绘制问题的解决方案

Jeesite开源项目中ECharts折线图MarkPoint无法绘制问题的解决方案 在Jeesite开源项目的开发中&#xff0c;数据可视化是一个不可或缺的环节。ECharts作为一个功能强大的数据可视化库&#xff0c;在项目中经常被用来绘制各种图表。然而&#xff0c;在绘制折线图时&#xff0c;有…

【python】python的选择语句的三个题目

1.乘坐飞机时&#xff0c;有些航班没有行李额度&#xff0c;当乘客的行李小于等于20公斤时&#xff0c;按每公斤1.68元收费&#xff1b;大于20公斤时&#xff0c;按每公斤1.98元收费&#xff0c;编写程序计算收费情况&#xff08;保留两位小数&#xff09; air_bagfloat(input…

swiftUI macOS使用webview加载外部网址

import SwiftUI import WebKitstruct ContentView: View {var body: some View {VStack {Text("测试")WebView(urlString: "https://aweb123.com").frame(maxWidth: .infinity, maxHeight: .infinity) // 让 WebView 占据整个可用空间}.frame(minWidth: 20…

欧拉回路算法

1 基本概念 1.1 欧拉路径和欧拉回路 欧拉回路&#xff1a; 在一个图中&#xff0c;由i点出发&#xff0c;将每个边遍历一次最终回到出发点i的一条路径。具有欧拉回路的图称为欧拉图。 无向图 存在欧拉回路的充要条件是所有的点的度数均为偶数 因为每个点的度数为偶数&#xf…

OpenHarmony实战:轻量系统STM32F407芯片移植案例

介绍基于STM32F407IGT6芯片在拓维信息Niobe407开发板上移植OpenHarmony LiteOS-M轻量系统&#xff0c;提供交通、工业领域开发板解决方案。 移植架构采用Board与SoC分离方案&#xff0c;使用arm gcc工具链Newlib C库&#xff0c;实现了lwip、littlefs、hdf等子系统及组件的适配…

Todesstern:一款针对注入漏洞识别的强大变异器引擎

关于Todesstern Todesstern是一款功能强大的变异器引擎&#xff0c;该工具基于纯Python开发&#xff0c;该工具旨在辅助广大研究人员发现和识别未知类型的注入漏洞。 Todesstern翻译过来的意思是Death Star&#xff0c;即死亡之星&#xff0c;该工具是一个变异器引擎&#xff…

【剪映专业版】03云空间扩容

视频课程&#xff1a;B站有知公开课【剪映电脑版教程】 个人云空间&#xff1a;多端同步及素材、草稿保存 云空间默认为512M&#xff0c;可以免费提升至3GB 访问剪映官网-全能易用的桌面端剪辑软件-轻而易剪 上演大幕&#xff0c;后进入工作台 点击消息 小组云空间&#xff…

视频图像的两种表示方式YUV与RGB(2)

前一篇文章具体介绍了视频图像的两种表示方式&#xff0c;此篇详细介绍下YUV的采样格式及其对图像视频的表示方式。 常见YUV有很多规格&#xff0c;例如YUV444&#xff0c;YUV422和YUV420&#xff0c;后面的数字是表示采样的比例。其中YUV420是FFmpeg里最常用的&#xff0c;因为…

004_文本分析与挖掘(jieba库三种分词模式)

jieba库 一、概述 jieba 库的分词原理是利用一个中文词库&#xff0c;将待分词的内容与分词词库进行比对&#xff0c;通过图结构和动态规划方法找到最大概率的词组&#xff1b;除此之外&#xff0c;jieba 库还提供了增加自定义中文单词的功能。 支持三种分词模式 1、精确模式…

Linux(CentOS7)部署 y-api 接口管理平台

目录 前言 前置环境 mongodb node 安装 y-api 部署页面 启动 y-api 基本使用教程 前言 前后端分离时代&#xff0c;前后端通过接口文档来协作开发项目。一般开发过程中&#xff0c;由后端先编写接口文档&#xff0c;然后交付给前端&#xff0c;这时候前后端都根据这个…

[数据概念|方案实操]最新案例-七个数据资产化案例解析

“ 数据资产化市场发展可称得上是如火如荼” 数据资产化市场快速发展&#xff0c;最近又涌现出一批创新案例&#xff0c;在这里跟大家做一个分享和解析&#xff0c;这里我们按照发生或报道时间顺序由近至远。 1.2024年3月21日&#xff0c;北京建院完成建筑数据资产模拟入表 2…

ML Kit:通过Mendix 集成人脸识别算法

预训练模型是一种已经使用训练数据集进行训练并包含执行模型所需所有参数的机器学习模型。这类模型常用于计算机视觉领域&#xff0c;比如可以在Mendix Studio Pro中导入ONNX模型后&#xff0c;可以在微流程中执行该模型。 本文讲述如何在Mendix应用程序中集成特定的人脸检测模…

OpenHarmony实战:帆移植案例(中)

OpenHarmony实战&#xff1a;帆移植案例&#xff08;上&#xff09; Audio服务介绍 服务节点 基于ADM框架的audio驱动对HDI层提供三个服务hdf_audio_render、hdf_audio_capture、hdf_audio_control。 开发板audio驱动服务节点如下&#xff1a; console:/dev # ls -al hdf_au…

【24年软考】信息系统项目管理师论文写作技巧(附范文10篇)

24年软考信息系统项目管理师论文写作准备&#xff1a; 论文准备时一定要紧扣考纲来进行&#xff0c;这样才能紧靠考试内容&#xff0c;不至于跑偏得不到高分。 1、多看论文范文&#xff0c;能够从别人的论文中快速熟悉写作的框架和思路。&#xff08;结尾有论文范文分享&…

数据库之DQL操作(数据查询语言)

DQL英文全称是Data Query Language(数据查询语言)&#xff0c;数据查询语言&#xff0c;用来查询数据库中表的记录。查询关键字: SELECT。 本节介绍以下表为例&#xff1a; create table emp(id int comment 编号&#xff0c;workno varchar(10) comment 工号&#xff0c;nam…

mybatis-plus与mybatis同时使用别名问题

在整合mybatis和mybatis-plus的时候发现一个小坑&#xff0c;单独使用mybatis&#xff0c;配置别名如下&#xff1a; #配置映射文件中指定的实体类的别名 mybatis.type-aliases-packagecom.jk.entity XML映射文件如下&#xff1a; <update id"update" paramete…

rabbitmq安装延时插件

rabbitmq安装延时插件 1、下载延迟插件 在 RabbitMQ 的 3.5.7 版本之后&#xff0c;提供了一个插件&#xff08;rabbitmq-delayed-message-exchange&#xff09;来实现延迟队列 &#xff0c;同时需保证 Erlang/OPT 版本为 18.0 之后。 我这里 MQ 的版本是 3.10.0 现在去 GitH…