华为海思校园招聘-芯片-数字 IC 方向 题目分享——第二套

华为海思校园招聘-芯片-数字 IC 方向 题目分享(有参考答案)——第二套(共九套,每套四十个选择题)

部分题目分享,完整版获取(WX:didadidadidida313,加我备注:CSDN huawei数字芯片题目,谢绝白嫖哈)

在这里插入图片描述

  1. 表示任意两位无符号十进制数需要(7)位二进制数。

  2. 时间尺度定义为 timescale 10ns/100ps,选择正确答案(b)
    a. 时间精度 10ns
    (recovery,恢复),并且保证复位置位的时刻能晚于时钟沿一段时间(removal,清除),
    以此来避免复位释放的时候出现亚稳态。类似于寄存器 D 端的 setup 和 hold 检查。

  3. 在异步 FIFO 设计中,满信号由写时钟产生,空信号由读时钟产生(√)
    解析:写时钟驱动写指针增加,和 FIFO 有效数据的增加,有效数据到达深度时满信号拉高;
    读时钟驱动读指针增加,和 FIFO 有效数据的减少,有效数据为 0 时空信号拉高;
    b. 时间精度 100ps
    c. 时间单位 100ps
    d. 时间精度不确定
    解析:10ns 为时间单位,100ps 为时间精度。
    时间单位主要用在timescale 定义之后的代码中,直至遇到另一个timescale 指令或`resetall
    指令为止,用来表示 verilog 语法中使用到时间的表达式的单位。比如:
    and # (5.22, 6.17 ) Al (Z, A, B); 里面的 5.22 和 6.17 分别代表 52.2ns 和 61.7ns
    或者 always@(posedge clk) out <= #3 in; 里面的 3 代表 30ns。
    时间精度一般体现在波形的时间横轴上,最小的一个时间单位跨度即时间精度 100ps。

  4. 时序逻辑电路不仅与输入有关,还与原来的状态有关。(√)

  5. 同步复位需要进行 recovery 和 removal 检查,异步复位不需要进行 recovery 和 removal
    检查(×)
    解析:recovery 和 removal 存在于拥有 async reset 端口的寄存器,因此异步复位需要做这种
    检查。这种检查的目的是为了保证复位释放的时刻能早于时钟沿并且保持到时钟沿到来

6.关于 false path,正确的是(d)
a. 一般异步电路可以设置为 false path
b. 两个不同频率的接口一定可以设置为 false path
c. 一般异步复位可以设置为 false path
d. 一般模拟 ip 和系统的互联接口都可以设置为 false path
解析:
a 是错误的。设置 false path 的原因是该路径没必要满足特定时序(比如
setup/hold,recovery/removal,clock gating,max delay 等特定时序)。虽然异步电路时钟之间
没有固定的相位关系,工具没法直接做 reg‐reg 的 setup/hold 检查,但是可以设置 max delay
等特殊约束对需要满足一定时序关系的异步电路做检查,需要看具体的场景。
b 是错误的。频率不同和 false path 没有任何关系。而异步电路的频率可能不同,但是频率
不同不等于异步电路,异步电路的本质是来自不同晶振的时钟源驱动的电路,他们频率甚至
也可以相同。
c 是错误的。对于异步复位,指的只是寄存器使用了异步复位端口 async_reset,在复位的时
候复位信号可以是异步的。但它在释放的时候是需要满足 recovery‐removal 时序检查的,需
要做同步释放,因为做了同步,所以 STA 工具有能力做检查。所以异步复位不能设为 false
path,需要检查 recovery‐removal 时序。
d 是正确的。模拟 ip 的时钟频率一般远小于数字电路,因此对数字电路的时序不敏感,互联
接口可以设置 false path。
7.下面是一个什么电路:©
always@(posedge clk or negedge rst_n) begin
If(rst_n == 1’b0)
a<=2’b0;
elseif(b>2’b0)
a<= b
end
a. 综合为 latch
b. 带同步复位的 d 触发器
c. 带异步复位的 d 触发器
d. 组合逻辑
解析:posedge clk 决定了这是一个触发器,if(rst_n == 1’b0)和 negedge rst_n 决定了这是一个
异步复位的 d 触发器,复位和时钟无关(异步)。

  1. 对于信号定于语句:reg[0:4] always,a;说法错误的是(b)
    a. 不能使用关键字定义信号名
    b. 信号定义为 reg 型,只能使用在时序电路的赋值中
    c. bit 定义顺序应该从高到低
    d. 每个信号应单独用一行来声明
    解析:a 和 c 违背 verilog 语法,是错的。d 只是建议,并不违背 verilog 语法。相比之下,b
    是绝对错的,因为 reg 型可以用于组合逻辑赋值,比如 always(*)。

  2. 下列说法错误的是(d)
    a. 条件语句,如果无优先级关系,尽量采用 case,避免多级 else if,影响时序;
    b. If/else 语句配对使用,case 语句加 default 项;组合逻辑中在所有条件下都要对信号幅值,
    如果要保持步便用 a=a 方式赋值;
    c. 两个向量进行比较操作或加减操作或赋值操作时,两个向量的位宽要相等,避免隐式扩
    展。
    d. 可综合代码中,除了 for 语句中的循环变量可以定义为 integer 型以外,所有变量和信号
    都只能为 wire 或 reg 型,不能定义为整型,实数型,无符号型,realtime 型和 time 型。
    解析:
    a 是正确的,优先级条件语句会综合成串联的选择逻辑,时序较差,而 case 可以综合成并行
    的选择逻辑,n 个条件逻辑级数为 log2n。
    b 是正确的,但不严谨。if/else 可以不配对使用,在时序逻辑下,可以只有 if 没有 else,这
    时候 else 分支保持寄存器原值,当然有 else 使代码更清晰。有 case 语句,如果是组合逻辑,
    只要有条件没给赋值,会综合出 latch。
    c 是正确的。两个向量位宽不匹配会隐式拓展高位,如果有操作数定义为 wire 类型但是作为
    有符号数使用,隐式拓展会错误高位补 0,拓展成无符号数,功能出错。
    d 是错误的,integer 可以被定义成信号,会综合出 32bit 的 register。但因为位宽固定,一般
    不这么使用。另外在 verilog‐2001 中加入了无符号型和有符号型的 reg/wire 定义,也属于可
    综合类型。其他类型不可综合。
    10.关于异步设计的危害,下面说法错误的是:(b)
    a. 信号的时延随着每次布局布线的不同而不同,随着 pvt 的改变而改变,因此可靠性很差,
    而且不容易移植
    b. 异步设计会产生毛刺
    c. 异步设计不能做静态时序分析
    d. 异步设计会带来很大的同步翻转噪声
    解析:
    a 是正确的。现在大部分的设计都是同步设计,小部分高性能低功耗电路可能会考虑使用异
    步设计。异步设计的好处之一便是可以最大限度利用时间窗的 margin。有点类似 latch 的
    timeborrow,无需等待同步打拍,并且没有了时钟信号,功耗可以大大降低。坏处是需要特
    殊的握手机制来保证时序,而握手机制又很大程度上依赖于信号的时延,像 a 所说,时延不
    可控型较强,因此可靠性较差,而且不容易移植。
    b 是错的,毛刺并非异步设计导致,即便是同步设计,只要信号传递过程中中间结果和最终
    输出不同(卡诺图可以清楚看到),也会有毛刺,只不过异步设计的毛刺比较容易导致功能
    错误,因为没有时序检查,没有 setup/hold 来保证毛刺消除。
    c 是对的。现在的静态时序分析都是基于同步设计,异步设计没有时钟的概念,所有信号没
    有固定的相位关系,工具无法建模分析。
    d 是对的。这里的翻转噪声主要来自于信号线之间的耦合电容。如果两个异步信号之间有耦
    合电容,那么他们的噪声比同步信号之间大得多,因为他们的电平跳变相互影响的时间窗口
    更大。

  3. 多 bit 总线信号可以通过格雷码转换进行异步处理,例如:8bit 的数据总线进行格雷码
    转换,然后通过双触发器法实现异步处理(√)
    解析:格雷码将多 bit 的翻转转化为单 bit 的翻转,解决了多 bit 异步信号传播过程中因时延
    不同而导致的数据采集端采集信号错误的问题。

  4. System Verilog 中,下面哪种数组在使用前需要执行 new 操作(c)
    a. 压缩数组
    b. 联合数组
    c. 动态数组
    d. 多维数组
    解析:动态数组通过 new()函数预先分配存储空间。

  5. 电路设计中,只要采用静态时序分析就可以保证电路设计的准确性,不需要再进行动态
    时序分析了。(×)
    解析:现在大部分的同步电路设计流程都是 rtl 验证+formality 形式验证+sta 静态时序分析。
    通过 rtl 验证保证功能完备,通过 formality 保证 rtl 和网表一致性。因为有了 formality 保证
    网表和 rtl 的一致性,因此如果 rtl 验证完备,一般情况下就可以保证网表功能验证完备。然
    后通过对网表进行静态时序分析(sta)来保证没有时序风险。动态时序分析(后仿)主要是
    跑一些典型场景,保证在典型场景下不会有时序问题,增强设计信心,对于同步电路,只要
    sta 阶段检查仔细,问题一般不大。但是设计中难免会有一小部分异步电路无法进行静态时
    序分析,因此必须需要通过后仿来进行排查。
    在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/802060.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Git-LFS 远程命令执行漏洞 CVE-2020-27955 漏洞复现

今天遇到了一个比较有意思的洞&#xff0c;复现一下下.......... 漏洞描述 Git LFS 是 Github 开发的一个 Git 的扩展&#xff0c;用于实现 Git 对大文件的支持 一些受影响的产品包括Git&#xff0c;GitHub CLI&#xff0c;GitHub Desktop&#xff0c;Visual Studio&#xff0…

51单片机之自己配串口寄存器实现波特率9600

本配置是根据手册进行开发配置的 1、首先配置SCON 所以综上所诉 SCON 0x40 &#xff08;0100 0000&#xff09; 2、PCON不用配置 3、配置定时器1 4、波特率的计算 5、配置AUXR 6、对比 7、实现 8、优化&#xff08;实现字符串&#xff09; 引入TI &#xff08;智能延时&…

对于嵌入式工程师,需要掌握的知识是广还是精?

我刚开始接触嵌入式的时候&#xff0c;感觉学这个好变态啊。 要学的东西太多了&#xff0c;数字电路、模拟电路、C语言、汇编、51单片机、Protel 99SE、Pcb Layout、STM32单片机、RTOS、Linux、ARM等等.... 可以说&#xff0c;随便拿个魔法电路出来&#xff0c;想达到精的程度&…

【C++】C++11可变参数模板

&#x1f440;樊梓慕&#xff1a;个人主页 &#x1f3a5;个人专栏&#xff1a;《C语言》《数据结构》《蓝桥杯试题》《LeetCode刷题笔记》《实训项目》《C》《Linux》《算法》 &#x1f31d;每一个不曾起舞的日子&#xff0c;都是对生命的辜负 目录 前言 可变参数模板的定义…

Java绘图坐标体系

一、介绍 下图说明了Java坐标系。坐标原点位于左上角&#xff0c;以像素为单位。在Java坐标系中&#xff0c;第一个是x坐标&#xff0c;表示当前位置为水平方向&#xff0c;距离坐标原点x个像素&#xff1b;第二个是y坐标&#xff0c;表示当前位置为垂直方向&#xff0c;距离坐…

LLM大语言模型(九):LangChain封装自定义的LLM

背景 想基于ChatGLM3-6B用LangChain做LLM应用&#xff0c;需要先了解下LangChain中对LLM的封装。本文以一个hello world的封装来示例。 LangChain中对LLM的封装 继承关系&#xff1a;BaseLanguageModel——》BaseLLM——》LLM LLM类 简化和LLM的交互 _call抽象方法定义 ab…

操作系统理论知识快速总览

操作系统整体架构 搬出考研时的思维导图 操作系统主要分为 批处理系统(老古董&#xff0c;基本不用了)实时操作系统(嵌入式中使用较多&#xff0c;RTOS)分时操作系统(PC中使用较多&#xff0c;Linux&#xff0c;Windows) 分时操作系统和实时操作系统的使用场景不同&#xf…

【蓝桥杯第十二届省赛B】(部分详解)

空间 8位1b 1kb1024b(2^10) 1mb1024kb(2^20) 时间显示 #include <iostream> using LLlong long; using namespace std; int main() {LL t;cin>>t;int HH,MM,SS;t/1000;SSt%60;//like370000ms370s,最后360转成分余下10st/60;MMt%60;t/60;HHt%24;printf("%02d:…

[C语言]——动态内存管理

目录 一.为什么要有动态内存分配 二.malloc和free 1.malloc 2.free 三.calloc和realloc 1.calloc 2.realloc 3.空间的释放​编辑 四.常见的动态内存的错误 1.对NULL指针的解引用操作 2.对动态开辟空间的越界访问 3.对非动态开辟内存使用free释放 4.使用free释放⼀块…

外汇110:谷歌起诉应用程序开发商伪造加密投资APP诈骗!

谷歌&#xff08;Google&#xff09;已对两家应用程序开发商提起诉讼&#xff0c;指控其参与“国际在线消费者投资欺诈计划”。该计划欺骗用户从 Google Play 商店和其他渠道下载虚假的安卓&#xff08;Android&#xff09;应用程序&#xff0c;并以承诺更高回报为幌子窃取他们…

SinoDB用户权限

SinoDB用户权限是由数据库对象和操作类型两个要素组成的&#xff0c;定义一个用户的权限就是定义这个用户可以对哪些数据对象进行哪些类型的操作。 SinoDB使用了三级权限来保证数据的安全性&#xff0c;它们分别是数据库级权限&#xff0c;表级权限和字段级权限。 1. 数据库级…

备考ICA----Istio实验17---TCP流量授权

备考ICA----Istio实验17—TCP流量授权 1. 环境准备 1.1 环境部署 kubectl apply -f <(istioctl kube-inject -f istio/samples/tcp-echo/tcp-echo.yaml) -n kim kubectl apply -f <(istioctl kube-inject -f istio/samples/sleep/sleep.yaml) -n kim1.2 测试环境 检测…

LangChain-14 Moderation OpenAI提供的功能:检测内容中是否有违反条例的内容

背景描述 我们在调用OpenAI的接口时&#xff0c;有些内容可能是违反条例的&#xff0c;所以官方提供了一个工具来检测。 安装依赖 pip install --upgrade --quiet langchain-core langchain langchain-openai编写代码 下文中我们使用了: OpenAIModerationChain 这个工具来…

PHP运算符与流程控制

华子目录 运算符赋值运算符算术运算符比较运算符逻辑运算符连接运算符错误抑制符三目运算符自操作运算符 计算机码位运算符 运算符优先级流程控制控制分类顺序结构分支结构if分支switch分支 循环结构for循环while循环continuebreak 运算符 运算符&#xff1a;operator&#xf…

JNA、JNI、原生C++函数调用效率及测试过程

结论 如果JAVA要高效调用C函数&#xff0c;则需要通过JNI封装C函数后进行native方法调用&#xff0c;JNI的执行效率比JNA高600倍左右。从开发效率上来说&#xff0c;JNA开发速度比JNI快许多&#xff0c;因为不需要做二次封装 测试对比 纯C调用&#xff1a; Function call to…

深入了解iOS内存(WWDC 2018)笔记-内存诊断

主要记录下用于分析iOS/macOS 内存问题的笔记。 主要分析命令&#xff1a; vmmap, leaks, malloc_history 一&#xff1a;前言 有 3 种思考方式 你想看到对象的创建吗&#xff1f;你想要查看内存中引用对象或地址的内容吗&#xff1f;或者你只是想看看 一个实例有多大&#…

【强化学习】Actor-Critic

Actor-Critic算法 欢迎访问Blog全部目录&#xff01; 文章目录 Actor-Critic算法1.Actor-Critic原理1.1.简述1.1.优劣势1.3.策略网络和价值网络1.3.1.策略网络&#xff08;Actor)1.3.2.价值网络&#xff08;Critic) 1.4.程序框图和伪代码 2.算法案例&#xff1a;Pendulum-v12…

T-Mamba:用于牙齿 3D CBCT 分割的频率增强门控长程依赖性

T-Mamba&#xff1a;用于牙齿 3D CBCT 分割的频率增强门控长程依赖性 摘要Introduction方法T-Mamba architectureTim block T-Mamba: Frequency-Enhanced Gated Long-Range Dependendcy for Tooth 3D CBCT Segmentation 摘要 三维成像中的高效牙齿分割对于正畸诊断至关重要&am…

Windows系统读取XDMA实际运行链路速度和PCIE带宽

在我们平常设计XDMA的时候&#xff0c;经常会遇到一个问题&#xff1a; 在Vivado中设计的XDMA IP中选择的PCIE带宽和链路速度是理想的&#xff0c;但是下到板卡运行的时候&#xff0c;测量速度却发现读写速度根本不是理想中的速度&#xff0c;找不到问题&#xff0c;无法证明我…

Octopus:2B 参数语言模型即可媲美 GPT-4 的函数调用性能

近年来&#xff0c;大语言模型在 PC、智能手机和可穿戴设备的操作系统中应用逐渐成为趋势。 例如&#xff0c;MultiOn (Garg, 2024) 和 Adept AI (Luan, 2024) 等 AI 助理工具&#xff0c;以及 Rabbit R1 (Lyu, 2024) 和 Humane AI Pin (Chaudhri, 2024) 等 AI 消费产品在消费者…