【Linux】基础IO----系统文件IO 文件描述符fd 重定向

> 作者:დ旧言~
> 座右铭:松树千年终是朽,槿花一日自为荣。

> 目标:了解在Linux下的系统文件IO,知道什么是文件描述符,什么是重定向

> 毒鸡汤:白日莫闲过,青春不再来。

> 专栏选自:Linux初阶

> 望小伙伴们点赞👍收藏✨加关注哟💕💕

🌟前言

最早我们在C语言中学习关于如何用代码来管理文件,比如文件的输入和文件的输出,一些文件的接口,掌握上述的知识只能说是对文件入门而已,在Linux中我们是一切接文件的,如何深入学习文件的知识这是一个难题,今天我们所探讨就是Linux的基础I/O。

⭐主体

学习【Linux】基础IO咱们按照下面的图解:

🌙 回顾C文件接口

💫 C 读写文件

文件操作:

  • 首先要打开文件:打开成功,返回文件指针;打开失败,返回NULL
  • 最后要关闭文件

代码操作:

FILE *fopen(const char *path, const char *mode);
int fclose(FILE *fp);
1.C 写文件

采用方法:

我们可以fputs/fgets以字符串形式读写;也可以fprintf/fscanf格式化读写

代码操作:

int fputs(const char *s, FILE *stream);  向特定文件流写入字符串
int fprintf(FILE *stream, const char *format, ...);

举个栗子:

①如果以"w"模式打开文件,默认是文本读写,且会把原始内容清掉再写。

代码如下:

#include <stdio.h>int main()
{FILE *fp = fopen("log.txt","w");if(fp == NULL){perror("fopen");return 1;}// 进行文件操作fclose(fp);return 0;	
}

运行结果:

②如果要以追加方式写,则要以"a" append模式打开文件

代码如下:

#include <stdio.h>
#include <unistd.h>
#include <string.h>int main()
{FILE *fp = fopen("log.txt","a"); // 追加if(fp == NULL){perror("fopen");return 1;}// 进行文件操作const char* s = "hello world\n";fwrite(s,strlen(s),1,fp);return 0;	
}

运行结果:

2.C 读文件

解读:

fgets从特定文件流中按行读取,内容放在缓冲区。读取成功返回字符串起始地址,读失败返回NULL.

代码演示:

char *fgets(char *s, int size, FILE *stream); //size:为缓冲区大小
int fscanf(FILE *stream, const char *format, ...);

举个栗子:

#include <stdio.h>
#include <unistd.h>
#include <string.h>int main()
{FILE *fp = fopen("./log.txt","r");if(fp == NULL){perror("fopen");return 1;}// 进行文件操作char buffer[64];while(fgets(buffer,sizeof(buffer),fp)){printf("%s",buffer);//把我们读到的东西打出来}return 0;	
}

运行结果:

💫 关于stdin stdout stderr

概念分析:

C语言默认会打开三个输入输出流:stdin、stdout、stderr,它们的类型都是FILE*,C语言把它们当做文件看待,本质上我们最终都是访问硬件。C++中也有cin、cout、cerr,几乎所有语言都提供标准输入、标准输出、标准错误。

  • stdin对应的硬件设备是键盘
  • stdout对应显示器
  • stderr对应显示器

总结分析:

既然fputs是向文件写入,stdout也是FILE*类型,我们是不是可以向显示器标准输出打印了?这说明显示器被看做文件即:Linux下,一切皆文件。

举个栗子:

问题拓展:

fputs可以向一般文件(磁盘,也是硬件)或者硬件设备写入。这反映着Linux下一切皆文件

🌙 系统文件I/O

文件操作最终都是访问硬件(显示器、键盘、文件(磁盘))。众所周知,OS是硬件的管理者。所有语言上对“文件”的操作,都必须贯穿操作系统。然而OS不相信任何人,访问操作系统,就必须要通过系统接口!!

其实我们学过的几乎所有的语言中,fopen/fclose,fread/fwrite,fputs/fgets,fgets/fputs 等底层一定需要使用OS提供的系统调用接口,下面咱们就来学习文件的系统调用接口,才能做到万变不离其宗!!

图解:

💫 open & close

采用 man open 指令查看相关资料

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>int open(const char *pathname, int flags);//路径 + 选项
int open(const char *pathname, int flags, mode_t mode);

三个参数:

pathname: 要打开或创建的目标文件文件名
flags:    打开方式。传递多个标志位,下面的一个或者多个常量进行“或”运算,构成flags.O_RDONLY: 只读打开O_WRONLY: 只写打开O_RDWR  : 读写打开以上这三个常量,必须指定一个且只能指定一个O_CREAT : 若文件不存在,则创建它。同时需要使用mode选项,来指明新文件的访问权限O_APPEND: 追加写
mode: 	  设置默认权限信息 

返回值(int):

return the new file descriptor, or -1 if an error occurred (in which case, errno is set appropriately).成功: 新打开的文件描述符 失败: -1

采用 man close 指令查看相关资料

#include <unistd.h>int close(int fd);

举个栗子:

代码如下:

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>int main()
{int fd = open("./log.txt",O_WRONLY | O_CREAT);// int fd = open("./log.txt",O_WRONLY | O_CREAT,0644);if(fd < 0){printf("open error\n");// return 1;}close(fd);return 0;	
}

运行结果:

问题分析:

可以看到权限完全是混乱的!这是因为,没有这个文件,要创建它,系统层面就必须指定权限是多少!我们采用权限设置的八进制方案

代码再次更新:

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>int main()
{//int fd = open("./log.txt",O_WRONLY | O_CREAT);int fd = open("./log.txt",O_WRONLY | O_CREAT,0644);if(fd < 0){printf("open error\n");return 1;}close(fd);return 0;	
}

运行更新结果:

分析结果:

之前我们在语言层面,创建时就是一个正常权限,我根本就不关心什么只写、创建、权限这些与系统强相关的概念。语言为我们做了封装,我用就好了

fopen("./log.txt", "w");
int fd = open("./log.txt", O_WRONLY | O_CREAT, 0644);

那第二个参数flags(int)为什么要把模式 | 在一起呢?这是一种用户层给内核传递标志位的常用做法。int有32个bit位,一个bit代表一个标志,就可以传递多个标志位且位运算效率较高。这些O_RDONLY、O_WRONLY、O_RDWR 都是只有一个比特位是1的数据,并且相互不重复,这样 |在一起,就能传递多个标志位。

我们可以来打开/usr/include/bits/fcntl-linux.h这个文件查看

💫 write & read

采用 man write 指令查看相关资料

#include <unistd.h>ssize_t write(int fd, const void *buf, size_t count);
参数:buf: 用户缓冲区count: 期望写的字节数
返回值:实际写入的字节数

举个栗子:

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>int main()
{int fd = open("./log.txt",O_WRONLY | O_CREAT,0644);if(fd < 0){printf("open error\n");return 1;}const char* msg = "more then words\n";int cnt = 5;while(cnt--){write(fd,msg,strlen(msg));}close(fd);return 0;	
}

运行结果:

问题拓展:

注意小细节,写入文件的过程中,不需要写入\0!因为\0是C语言层面上规定字符串的结束标志,而写入文件关心的是字符串的内容,不需要\0标定字符串结束。


采用 man read 指令查看相关资料

#include <unistd.h>ssize_t read(int fd, void *buf, size_t count);
参数:buf: 读到的内容放在用户层缓冲区中,也就是自己定义缓冲区count: 期望读多少个字节
返回值:实际读多少个字节

举个栗子:

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>int main()
{int fd = open("./log.txt",O_RDONLY);if(fd < 0){printf("open");return 1;}char buffer[1024];ssize_t s = read(fd,buffer,sizeof(buffer)-1);if(s > 0){buffer[s] = 0;printf("%s",buffer);}close(fd);return 0;	
}

运行结果:

问题拓展:

我们把读到的内容当做一个长字符串处理,写入时不写\0,读也就不会读到,因此需要在末尾添加\0,以字符串打印出来。

🌙 文件描述符fd

问题提出:

open函数的返回值是所谓的文件描述符,既然类型为int,我就好奇它的值是多少呢?

再次分析:

如果我们连续打开若干文件,会发现打印3456… 我们知道打开文件失败返回-1,那么012去哪了呢?012消失的原因,要么是不让用,要么是被别人占用。

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>int main()
{int fd1 = open("./log1.txt",O_WRONLY | O_CREAT, 0644);int fd2 = open("./log2.txt",O_WRONLY | O_CREAT, 0644);int fd3 = open("./log3.txt",O_WRONLY | O_CREAT, 0644);int fd4 = open("./log4.txt",O_WRONLY | O_CREAT, 0644);printf("fd:%d\n",fd1);printf("fd:%d\n",fd2);printf("fd:%d\n",fd3);printf("fd:%d\n",fd4);close(fd1);close(fd2);close(fd3);close(fd4);return 0;	
}

总结分析:

事实上,当我们的程序运行起来变成进程,默认情况下,OS会帮助我们打开三个标准输入输出,012其实分别对应的就是标准输入、标准输出、标准错误。刚刚我们还提到语言上的stdin标准输入、stdout标准输出、stderr标准错误,对应硬件设备也是键盘、显示器、显示器,冥冥之中,这一定是有关联的,不过我们暂时先不考虑语言和系统上如何对应。

这样文件描述符被分配为01234678… 这样从0开始,连续的小整数,会让我们联想到数组下标!

验证:012代表标准输入、标准输出、标准错误

💫 file descriptor

文字描述:

众所周知,所有的文件操作都是进程执行对应的函数,即本质上是进程对文件的操作。

  • 如果一个文件没有被打开,这个文件是在磁盘上。如果我创建一个空文件,该文件也是要占用磁盘空间的,因为文件的属性早就存在了(包括名称、时间、类型、大小、权限、用户名所属组等等),属性也是数据,所谓“空文件”是指文件内容为空。

即磁盘文件 = 文件内容 + 文件属性。事实上,我们之前所学的所有文件操作都可以分为两类:对文件内容的操作 + 对文件属性的操作(fseek、ftell、rewind、chmod、chgrp等等).

  • 要操作文件,必须打开文件(C语言fopen、C++打开流、系统上open),本质上,就是文件相关的属性信息从磁盘加载到内存。

操作系统中存在大量进程,进程可以打开多个文件,即进程 : 文件 = 1 : n ,系统中可能存在着更多的打开的文件(暂时不考虑一个文件被多个进程打开的特殊情况)。那么,OS要不要把打开的文件在内存中(系统中)管理起来呢?那么就要上管理的六字真言:先描述,再组织!

  • 打开的这么多文件,怎么知道哪些是我们进程的呢?操作系统为了让进程和文件之间产生关联,进程在内核创建struct files_struct 的结构,这个结构包含了一个数组 struct file* fd_array[] ,也就是一个指针数组,把表述文件的结构体地址填入到特定下标中。

图解:

分析:

那么现在就能解释了为什么打开文件返回的是3:新打开一个文件本质是内核会为我们描述struct file结构,再把struct file地址填入到fd_array[]数组下标去,因为012已经被占用了,于是填到3号下标,因此在上层可以拿到3.

这也解释了为什么write和read这样的系统调用接口为什么一定要传入文件描述符fd:执行系统调用接口是进程执行的,通过进程PCB,找到自己打开的文件列表,通过fd索引数组找到对应的文件,从而对文件进行操作。

总结:

文件描述符fd,本质是内核中进程和打开文件关联数组下标

💫 理解一切皆文件

对于键盘显示器等等这些外设,一定都有比如像read、write读写方法,因为由冯诺依曼体系结构知,外设是要和内存打交道IO的。这可能有些奇怪,比如键盘能读我知道,但能写吗?难道我键盘安安静静的自己就开始动了?!注意,我们有统一的读写方法,但不代表非要每一个都实现,比如键盘就可以没有写方法,即方法为空。

因为它们的硬件结构不同,这些方法在底层实现是完全不一样的!这些方法都是在硬件的驱动层完成的。那又是如何做到一切皆文件的呢?Linux中做了软件的虚拟层vfs(虚拟文件系统),会统一维护每一个打开文件的结构体struct file.

回忆C++中的多态,我们可以编写一个父类(甚至是纯虚的,相当于定义一个接口类),子类继承父类,重写函数。我们让父类指针指向不同的子类对象,就会调用对应的方法。那么在C语言中,可以通过函数指针,做到调用同一个方法,指向不同对象时可以执行不同的方法,从而实现多态的性质。

我们在每个struct file当中包含上一大坨的函数指针,这样,在struct file上层看来所有的文件都是调用统一的接口;在底层我们通过函数指针指向不同硬件的方法。

同样在继承体系中,我甚至也不关心你到底是那个子类,比如,动物基类Animal被猫狗鸡鸭鹅都继承了,里面有一个eat方法,基类指针指向猫就调用猫的eat,基类指针指向狗就调用狗的eat… 这样看去我们就实现了“一切皆动物”,可以理解为C++的多态是漫长的软件开发摸索中实现**“一切皆…”**的高级版本/语言版本。

💫 文件描述符的分配规则

代码分析:

问题分析:

我把0关掉后,再打开文件是分配的文件描述符就是0,把1关掉分配的就是1

文件描述符的分配规则

每次给新文件分配的fd,是从fd_array[]中找一个最小的、未被使用的作为新的fd.这其实很好理解,打开的文件要和进程产生关联,就要线性遍历数组中找一个未被使用的下标,填入文件地址。

🌙 重定向

💫 输出重定向

问题抛出:

有没有细心的同学,上面我们唯独没有关闭1,我们现在上手试一下。按照文件描述符的规则,再打开就是打印我们刚刚关闭的1

问题分析

本来应该显示到显示器中,却被打印到文件内部,这种行为我们早就知道叫做输出重定向。咱们无意之间居然完成了一次重定向操作,为什么是这样呢?

这是因为:我们以上来就close(1), 断开了和显示器文件的关系,相当于置NULL,对于新打开的log.txt,根据文件分配规则,1是指向log.txt的。

图解:

思考:

printf底层是在做什么?事实上,它本质是向标准输出(stdout)打印 ——

int fprintf(FILE *stream, const char *format, ...);
stdout -> FIEL{fileno = 1} -> log.txt// stdout只认识1,只对1输入输出

这就是重定向的本质:在OS内部,更改fd对应的内容的指向!!

💫 追加重定向

追加重定向与输出重定向唯一的差别就是在打开方式上,增加O_APPEND选项。

💫 输入重定向

输入重定向就是把本来应该从键盘获取内容变成从文件中获取。

char *fgets(char *s, int size, FILE *stream); //详见1.1节

💫 dup2

分析:

如上我通过关闭文件然后再打开文件这样重定向,但是情况不会总是这样理想。

比如两个文件描述符13都已经被打开,如何实现重定向呢?我们勇敢的推测,既然在语言层调用时接口函数只认1,那么只需要把文件描述符表的3中的内容拷贝到1中 ,就实现了原本应向显示器文件写入,而现在向log.txt写入。

图解:

总结:

dup2就是用来做这个操作的。

#include <unistd.h>int dup2(int oldfd, int newfd); //oldfd->newfddup2() makes newfd be the copy of oldfd, closing newfd first if necessary, but note the following:
*  If oldfd is not a valid file descriptor, then the call fails, and newfd is not closed.
*  If oldfd is a valid file descriptor, and newfd has the same value as oldfd, then dup2() does nothing, and returns newfd.

拷贝的是fd对应内容,最终相当于全部变成old

🌙 Linux一切皆文件

在冯诺依曼体系中,我们知道硬件有键盘、显示器、磁盘、网卡等外设,在IO过程中,外设任何的数据处理都需要把数据读到内存,处理完毕之后将内存中的数据刷新到外设当中。因为软硬件资源多,所以操作系统需要对其先描述,在组织。所以这些外设都有对应的结构体,对应着属性信息,同时,对应着自己的IO函数,具体硬件的读写方法都在应用匹配的驱动程序里。每种硬件的访问方法都是不一样的,而Linux一切皆文件是这样体现的:任何一个被打开的文件结构体对象struct file{ //各种文件的属性 }对象,不同的文件对应的读写方法不一样,struct file对象里面可以有很多的(*readp)()、(*writep)()函数指针,通过函数指针指向具体的读写方法。

站在struct file上层看来,所有的设备和文件,统一都是struct file->,就可以调用具体的设备方法了,所以在用户级看到的就是Linux下一切皆文件!

**上层调用不同的文件,底层可以调用不同的方法,在上层看来,只需要使用对应统一的文件,使用struct file,访问不同的文件,这是C语言实现多态的特征。这里struct file称为在操作系统层面上虚拟出来的文件对象vfs(虚拟文件系统)**不用关心底层差别,统一使用文件的接口方式进行文件操作

🌟结束语 

       今天内容就到这里啦,时间过得很快,大家沉下心来好好学习,会有一定的收获的,大家多多坚持,嘻嘻,成功路上注定孤独,因为坚持的人不多。那请大家举起自己的小手给博主一键三连,有你们的支持是我最大的动力💞💞💞,回见。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/800752.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

linux:du和df区别

文章目录 1. 概述2. du 命令2. df 命令3. 区别总结 1. 概述 du 和 df 都是 Linux 系统中用于查看磁盘空间使用情况的命令&#xff0c;但它们的功能和用法有所不同。 2. du 命令 du 是 “disk usage” 的缩写&#xff0c;用于显示文件或目录的磁盘使用情况。du 命令用于查看指…

基于Socket简单的UDP网络程序

⭐小白苦学IT的博客主页 ⭐初学者必看&#xff1a;Linux操作系统入门 ⭐代码仓库&#xff1a;Linux代码仓库 ❤关注我一起讨论和学习Linux系统 1.前言 网络编程前言 网络编程是连接数字世界的桥梁&#xff0c;它让计算机之间能够交流信息&#xff0c;为我们的生活和工作带来便利…

机器学习笔记 - 深度学习遇到超大图像怎么办?使用 xT 对极大图像进行建模论文简读

作为计算机视觉研究人员,在处理大图像时,避免不了受到硬件的限制,毕竟大图像已经不再罕见,手机的相机和绕地球运行的卫星上的相机可以拍摄如此超大的照片,遇到超大图像的时候,我们当前最好的模型和硬件都会达到极限。 所以通常我们在处理大图像时会做出两个次优选择之一:…

lottery-攻防世界

题目 flag在这里要用钱买&#xff0c;这是个赌博网站。注册个账号&#xff0c;然后输入七位数字&#xff0c;中奖会得到相应奖励。 githacker获取网站源码 &#xff0c;但是找到了flag文件但是没用。 bp 抓包发现api.php&#xff0c;并且出现我们的输入数字。 根据题目给的附…

推荐一款很强大的SCADA工业组态软件

可以广泛应用于化工、石化、制药、冶金、建材、市政、环保、电力等几十个行业。 I官网网站:www.hcy-soft.com |体验地址:http://www.byzt.net:60/sm/ 一、产品简介 BY组态是完全自主研发的集实时数据展示、动态交互等一体的全功能可视化平台。帮助物联网、工业互联网、电力能…

怎么防止文件被拷贝,复制别人拷贝电脑文件

怎么防止文件被拷贝&#xff0c;复制别人拷贝电,脑文件 防止文件被拷贝通常是为了保护敏感数据、知识产权或商业秘密不被未经授权的人员获取或传播。以下列出了一系列技术手段和策略&#xff0c;可以帮助您有效地防止文件被拷贝。 1. 终端管理软件&#xff1a; 如安企神、域智…

Node.js创建第一个web服务

如果用PHP来编写后端代码&#xff0c;需要用Apache或者Nginx的服务器,来处理客户的请求响应。对于Node.js时&#xff0c;不仅实现了应用&#xff0c;同时还实现了整个HTTP服务器. 安装 Node Snippets插件&#xff08;编程自带提示&#xff09; console.log(你好nodejs); //表…

MySQL高级篇(B-Tree、Btree)

目录 1、Btree&#xff08;B-Tree&#xff09; 1.1、B-Trees的特点 二叉树缺点&#xff1a;顺序插入时&#xff0c;会形成一个链表&#xff0c;查询性能大大降低。大数据量情况下&#xff0c;层级较深&#xff0c;检索速度慢。红黑树&#xff1a;大数据量情况下&#xff0c;层…

虚拟主机WordPress网站安装教程

一般的企业官网&#xff0c;简站WordPress小编都推荐使用虚拟主机&#xff0c;用虚拟主机搭建一般的WordPress企业官网足够用了。最主要的好处是使用虚拟主机可以省去了主机维护的成本。 下面是以简站WordPress主题在虚拟主机搭建企业官网为例子&#xff0c;写的一个教程&…

多叉树题目:子树中标签相同的结点数

文章目录 题目标题和出处难度题目描述要求示例数据范围 解法思路和算法代码复杂度分析 题目 标题和出处 标题&#xff1a;子树中标签相同的结点数 出处&#xff1a;1519. 子树中标签相同的结点数 难度 5 级 题目描述 要求 给你一个树&#xff08;即一个连通的无向无环图…

JDK下载及安装说明

1&#xff0e;JDK下载 访问oracle官网&#xff1a;http://www.oracle.com 在首页点击Downloads&#xff0c;进入oracle软件下载页。 在下载页面&#xff0c;点击Java。 选择Java (JDK) for Developers&#xff0c;点击。 在 Java SE Downloads 页面&#xff0c;点击中间的DO…

app上架-您的应用存在最近任务列表隐藏风险活动的行为,不符合华为应用市场审核标准。

上架提示 您的应用存在最近任务列表隐藏风险活动的行为&#xff0c;不符合华为应用市场审核标准。 修改建议&#xff1a;请参考测试结果进行修改。 请参考《审核指南》第2.19相关审核要求&#xff1a;https://developer.huawei.com/consumer/cn/doc/app/50104-02 造成原因 …

后端说处理了跨域但没有生效

场景&#xff1a; 常见的跨域报错&#xff0c;一般都是由后端进行setHeader/*什么的。但是现在这种情况就是后端说他们做了处理。但是我这边请求还是报错。 withCredentials: with-credentials用来设置是否发送cookie&#xff0c;如果为true就会在跨域请求时候携带cookie&…

libVLC 提取视频帧

在前面的文章中&#xff0c;我们使用libvlc_media_player_set_hwnd设置了视频的显示的窗口。 libvlc_media_player_set_hwnd(vlc_mediaPlayer, (void *)ui.widgetShow->winId()); 如果我们想要提取每一帧数据&#xff0c;将数据保存到本地&#xff0c;该如何操作呢&#x…

Golang 开发实战day09 - package Scope

&#x1f3c6;个人专栏 &#x1f93a; leetcode &#x1f9d7; Leetcode Prime &#x1f3c7; Golang20天教程 &#x1f6b4;‍♂️ Java问题收集园地 &#x1f334; 成长感悟 欢迎大家观看&#xff0c;不执着于追求顶峰&#xff0c;只享受探索过程 Golang 教程09 - package Sc…

算法练习第12天|● 239. 滑动窗口最大值● 347.前 K 个高频元素

239.滑动窗口的最大值 力扣原题 题目描述&#xff1a; 给你一个整数数组 nums&#xff0c;有一个大小为 k 的滑动窗口从数组的最左侧移动到数组的最右侧。你只可以看到在滑动窗口内的 k 个数字。滑动窗口每次只向右移动一位。 返回 滑动窗口中的最大值 。 示例 1&#xff…

影响力营销与AI的结合:Kompas.ai在搭桥角色中的独特价值

在数字化营销的新时代&#xff0c;影响力营销已经成为品牌建立信任和提升市场影响力的有效手段。通过与关键意见领袖&#xff08;KOL&#xff09;的合作&#xff0c;品牌能够利用KOL的信誉和影响力来扩大其市场覆盖范围和提升品牌认知度。然而&#xff0c;寻找与品牌价值观相契…

Linux 性能分析工具大全

vmstat--虚拟内存统计 vmstat&#xff08;VirtualMeomoryStatistics&#xff0c;虚拟内存统计&#xff09;是 Linux 中监控内存的常用工具,可对操作系统的虚拟内存、进程、CPU 等的整体情况进行监视。vmstat 的常规用法&#xff1a;vmstat interval times 即每隔 interval 秒采…

rsync+inotify实时同步 和 GFS分布式文件系统概述

目录 一、rsyncinotify实时同步 1.1.实时同步的优点 1.2.Linux内核的inotify机制 1.3.发起端配置rsyncInotify 1.4.配置远程登陆 1.4.1.修改rsync源服务器配置192.168.190.101 ​编辑 1.4.2.配置server 192.168.190.102 二、GFS 2.1.GlusterFS简介 2.2.GlusterFS特点…

Flutter学习11 - Future 与 FutureBuilder

1、Future 可以利用 Future 实现异步调用 1.1、Future 的两种形式 自定义一个结果类 class Response {String _data;Response(this._data); }自定义方法实现 Future Future<Response> testFuture() {var random Random();int randomNumber random.nextInt(10);if …