FPGA + 图像处理(三)生成3x3像素矩阵

前言

生成NxN的像素矩阵是对图像进行各类滤波操作的基本前提,本文介绍一种通过bram生成3x3矩阵的方法。

程序

生成bram核

因为本文介绍的是基于bram生成的3x3像素矩阵,所以要先生成两个bram核,用于缓存前两行图像数据

在 IP catalog中选择Block Memory Generator

配置如下

注意这里选择simple dual port RAM,即伪双端口,一个端口只能写,一个端口只能读

端口A用于写入数据,注意数据的位宽要与图像位深相同,彩色通常为24位,灰度图为8位,数据深度为一行像素的长度,operating选择写优先,enable port type选择始终使能

端口B用于读取数据,这里要注意下面的primitives output register要勾选上,勾选该选项后,数据的输出会延迟一个时钟周期,用于对齐数据。

HDMI时序生成模块

这里也用到了HDMI时序生成模块,具体作用和前面文章讲的一样,一是可以做到通过同步信号简化对图像数据的管理,二是可以让测试的数据处理模块更方便的适配用HDMI显示的图像处理工程。

具体代码如下

module hdmi_tim_gen(input           	clk			,input           	rst_n	    ,input   	[23:0]  data_in		,output          	hdmi_hs		,     //行同步信号output          	hdmi_vs		,     //场同步信号output          	hdmi_de		,     //数据使能output  	[23:0]  hdmi_data	,     //RGB888颜色数据output		reg		data_req 	);//1280*720 分辨率时序参数
parameter  H_SYNC   =  11'd40;   //行同步
parameter  H_BACK   =  11'd220;  //行显示后沿
parameter  H_DISP   =  11'd1280; //行有效数据
parameter  H_FRONT  =  11'd110;  //行显示前沿
parameter  H_TOTAL  =  11'd1650; //行扫描周期parameter  V_SYNC   =  11'd5;    //场同步
parameter  V_BACK   =  11'd20;   //场显示后沿
parameter  V_DISP   =  11'd720;  //场有效数据
parameter  V_FRONT  =  11'd5;    //场显示前沿
parameter  V_TOTAL  =  11'd750;  //场扫描周期//reg define
reg  [11:0] 	cnt_h;
reg  [11:0] 	cnt_v;reg [10:0] pixel_xpos;
reg [10:0] pixel_ypos;assign hdmi_de  = data_req;
assign hdmi_hs  = ( cnt_h < H_SYNC ) ? 1'b0 : 1'b1;  //行同步信号赋值
assign hdmi_vs  = ( cnt_v < V_SYNC ) ? 1'b0 : 1'b1;  //场同步信号赋值//RGB888数据输出
assign hdmi_data = hdmi_de ? data_in : 24'd0;//请求像素点颜色数据输入
always @(posedge clk or negedge rst_n) beginif(!rst_n)data_req <= 1'b0;else if(((cnt_h >= H_SYNC + H_BACK - 2'd2) && (cnt_h < H_SYNC + H_BACK + H_DISP - 2'd2))&& ((cnt_v >= V_SYNC + V_BACK) && (cnt_v < V_SYNC + V_BACK+V_DISP)))data_req <= 1'b1;elsedata_req <= 1'b0;
end//像素点x坐标
always@ (posedge clk or negedge rst_n) beginif(!rst_n)pixel_xpos <= 11'd0;else if(data_req)pixel_xpos <= cnt_h + 2'd2 - H_SYNC - H_BACK ;else pixel_xpos <= 11'd0;
end//像素点y坐标	
always@ (posedge clk or negedge rst_n) beginif(!rst_n)pixel_ypos <= 11'd0;else if((cnt_v >= (V_SYNC + V_BACK)) && (cnt_v < (V_SYNC + V_BACK + V_DISP)))pixel_ypos <= cnt_v + 1'b1 - (V_SYNC + V_BACK) ;else pixel_ypos <= 11'd0;
end//行计数器对像素时钟计数
always @(posedge clk or negedge rst_n) beginif (!rst_n)cnt_h <= 11'd0;else beginif(cnt_h < H_TOTAL - 1'b1)cnt_h <= cnt_h + 1'b1;else cnt_h <= 11'd0;end
end//场计数器对行计数
always @(posedge clk or negedge rst_n) beginif (!rst_n)cnt_v <= 11'd0;else if(cnt_h == H_TOTAL - 1'b1) beginif(cnt_v < V_TOTAL - 1'b1)cnt_v <= cnt_v + 1'b1;else cnt_v <= 11'd0;end
endendmodule

生成3x3像素矩阵的顶层模块

module kernel_3x3_gen
(input					clk,  		input					rst_n,				//准备要进行处理的图像数据input					vs_i,input					de_i,input        [23:0]  	data_i,//矩阵化后的图像数据和控制信号output				vs_o,output				de_o,output	reg  [23:0]	mat11, output	reg  [23:0]	mat12,output	reg  [23:0]	mat13,output	reg	 [23:0]	mat21, output	reg  [23:0]	mat22, output	reg  [23:0]	mat23,output	reg	 [23:0]	mat31, output	reg  [23:0]	mat32, output	reg  [23:0]	mat33
);//wire define
wire  [23:0]  	row1_data;        //第一行数据
wire  [23:0]  	row2_data;        //第二行数据
wire	     	de_i_en ;//reg define
reg  [23:0]  row3_data;         //第三行数据,即当前正在接受的数据
reg  [23:0]  row3_data_d0;
reg  [23:0]  row3_data_d1;
reg  [23:0]  row2_data_d0;
reg  [1:0]   vs_i_d;
reg  [1:0]   de_i_d;assign	de_i_en = de_i_d[0] ;
assign	vs_o 	= vs_i_d[1];
assign	de_o  	= de_i_d[1] ;//当前数据放在第3行
always@(posedge clk or negedge rst_n) beginif(!rst_n)row3_data <= 0;else begin		if(de_i)row3_data <= data_i ;elserow3_data <= row3_data ;end
end//用于存储列数据的RAM
line_shift  u_line_shift
(.clk		    (clk),.de_i 			(de_i),.data_i	    	(data_i),   //当前行的数据.data1_o		(row2_data),   //前一行的数据.data2_o		(row1_data)    //前前一行的数据
);//将同步信号延迟两拍,用于同步化处理
always@(posedge clk or negedge rst_n) beginif(!rst_n) begin		vs_i_d <= 0;de_i_d <= 0;endelse begin		vs_i_d  <= { vs_i_d[0], vs_i };de_i_d  <= { de_i_d[0], de_i };end
endalways @(posedge clk or negedge rst_n)beginif(!rst_n)beginrow3_data_d1 <= 0;row3_data_d0 <= 0;row2_data_d0 <= 0;endelse beginrow3_data_d0 <= row3_data;row3_data_d1 <= row3_data_d0;row2_data_d0 <= row2_data;end
end//在同步处理后的控制信号下,输出图像矩阵
always@(posedge clk or negedge rst_n) beginif(!rst_n) begin		{mat11, mat12, mat13} <= 0;{mat21, mat22, mat23} <= 0;{mat31, mat32, mat33} <= 0;endelse if(de_i_en) begin				{mat11, mat12, mat13} <= {mat12, mat13, row1_data};{mat21, mat22, mat23} <= {mat22, mat23, row2_data_d0};{mat31, mat32, mat33} <= {mat32, mat33, row3_data_d1};endelse begin		{mat11, mat12, mat13} <= 0;{mat21, mat22, mat23} <= 0;{mat31, mat32, mat33} <= 0;end
endendmodule

行移位模块

module line_shift(input 			clk,input           de_i,input   [23:0]  data_i,    //当前行的数据output  [23:0]  data1_o,   //前一行的数据output  [23:0]  data2_o    //前前一行的数据
);//reg define
reg  de_i_d0;
reg  de_i_d1;
reg  de_i_d2;
reg  [10:0]  ram_rd_addr;
reg  [10:0]  ram_rd_addr_d0;
reg  [10:0]  ram_rd_addr_d1;
reg  [23:0]  data_i_d0;
reg  [23:0]  data_i_d1;
reg  [23:0]  data_i_d2;
reg  [23:0]  data1_o_d0;//在数据到来时,RAM的读地址累加
always@(posedge clk)beginif(de_i)ram_rd_addr <= ram_rd_addr + 1 ;	elseram_rd_addr <= 0 ;
end//将数据使能延迟两拍
always@(posedge clk) beginde_i_d0 <= de_i;de_i_d1 <= de_i_d0;de_i_d2 <= de_i_d1;
end//将RAM地址延迟2拍
always@(posedge clk ) beginram_rd_addr_d0 <= ram_rd_addr;ram_rd_addr_d1 <= ram_rd_addr_d0;
end//输入数据延迟3拍送入RAM
always@(posedge clk)begindata_i_d0 <= data_i;data_i_d1 <= data_i_d0;data_i_d2 <= data_i_d1;
end//用于存储前一行图像的RAM
blk_mem_gen_0  u_ram_1024x8_0(.clka   (clk),.wea    (de_i_d2),.addra  (ram_rd_addr_d1),     //在延迟的第三个时钟周期,当前行的数据写入RAM0.dina   (data_i_d2),.clkb   (clk),.addrb  (ram_rd_addr),    .doutb  (data1_o)              //延迟一个时钟周期,输出RAM0中前一行图像的数据
);//寄存前一行图像的数据
always@(posedge clk)begindata1_o_d0  <= data1_o;
end//用于存储前前一行图像的RAM
blk_mem_gen_0  u_ram_1024x8_1(.clka   (clk),.wea    (de_i_d1),.addra  (ram_rd_addr_d0),.dina   (data1_o_d0),       //在延迟的第二个时钟周期,将前一行图像的数据写入RAM1.clkb   (clk),.addrb  (ram_rd_addr),.doutb  (data2_o)           //延迟一个时钟周期,输出RAM1中前前一行图像的数据
);endmodule

仿真模块

`timescale 1ns/1nsmodule pic_tb();reg             clk,rst_n				;reg [23:0]      data_in					;
wire      		hdmi_hs,hdmi_vs,hdmi_de ;
wire [23:0]  	hdmi_data  				;
wire 			data_req   				;reg  			vs_i,de_i	;
wire 			vs_o,de_o		;
wire [23:0]		mat11, mat12, mat13 ;
wire [23:0]		mat21, mat22, mat23 ;
wire [23:0]		mat31, mat32, mat33 ;
//延迟1clk,与data同步,hdmi时序中,data比de延迟了一个时钟周期
always @(posedge clk)beginvs_i <= hdmi_vs;de_i <= hdmi_de;
endinitial beginclk = 1;rst_n = 0;#20 rst_n = 1;
end
always #10 clk = ~clk;reg [23:0] img[0:1280*720-1];
reg [31:0] addr;
initial begin$readmemh("D:/pic/img2txt.txt",img);
endalways @(posedge clk or negedge rst_n)beginif(!rst_n)beginaddr <= 0		;data_in <= 0	;endelse if(data_req) begindata_in	 <= img[addr];addr	 <= addr + 1;if(addr == (1280*720-1))addr <= 0;end
endhdmi_tim_gen u_hdmi_tim_gen(.clk		 	(clk),	.rst_n	  		(rst_n),//input.data_in	 	(data_in),//output.hdmi_hs	 	(hdmi_hs),.hdmi_vs	 	(hdmi_vs),.hdmi_de	 	(hdmi_de),.hdmi_data 		(hdmi_data),.data_req  		(data_req)
);kernel_3x3_gen u_kernel_3x3_gen(.clk        (clk), .rst_n      (rst_n),//预处理灰度数据.vs_i    		 (vs_i),.de_i     		 (de_i), .data_i          (hdmi_data),//输出3x3矩阵.vs_o   		(vs_o),.de_o    		(de_o),.mat11         (mat11),    .mat12         (mat12),    .mat13         (mat13),.mat21         (mat21),    .mat22         (mat22),    .mat23         (mat23),.mat31         (mat31),    .mat32         (mat32),    .mat33         (mat33)
);endmodule

整体架构

仿真结果

截取部分数据结果

mat31、mat32、mat33是第一行数据(最先输入的那一行),mat11、mat12、mat13是第三行数据(最后输入的那一行),可以看见数据的移位满足像素矩阵的要求。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/798766.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

刷代码随想录有感(24)

有时候我会怀疑努力的意义&#xff0c;因为我总是花人家好几倍的时间去理解一个狗看了都觉得弱智的问题&#xff0c;思考过后我知道&#xff0c;努力本没有意义&#xff0c;是在未来可能十年内取得成就时突然回想起来之前做过一些事情&#xff0c;未来的成就赋予曾经的意义&…

说说虚拟化上部署Oracle RAC的那点注意事项

0.概述 目前在虚拟化上部署RAC主要是以下3个场景 1是VMWARE的虚拟化&#xff08;私有云&#xff09;&#xff1b; 2是国产厂商基于KVM的虚拟化&#xff08;私有云&#xff09;&#xff1b; 3是公有云&#xff0c;由云厂商给你提供虚拟主机和虚拟磁盘。 这里我只对前2个熟悉一些…

【微服务】面试题(一)

最近进行了一些面试&#xff0c;这几个问题分享给大家 一、分别介绍一下微服务、分布式以及两者的区别 微服务&#xff08;Microservices&#xff09;和分布式系统&#xff08;Distributed Systems&#xff09;是两种不同的软件架构风格&#xff0c;虽然它们之间有些重叠&#…

SpriingBoot整合MongoDB多数据源

背景&#xff1a; MongoDB多数据源&#xff1a;springboot为3以上版本&#xff0c;spring-boot-starter-data-mongodb低版本MongoDBFactory已过时&#xff0c; 改为MongoDatabaseFactory。 1、pom引入&#xff1a; <dependency><groupId>org.springframework.boo…

汇编基础----mov基本操作

汇编基础----mov基本操作 下载VS2022 这个网上教程很多,自行下载安装即可 新建项目 选择空项目,如何点击下一步 在源文件下创建这二个文件 修改配置使asm文件能被解析,右击项目名(demo)->生成依赖项->生成自定义->勾选如下图所示选项->确定 立即数寻址 main…

qt环境搭建-镜像源安装Qt Creator(5.15.2)以及配置环境变量

前言&#xff1a; 版本&#xff1a;5.15.2 镜像源&#xff1a;ustc与清华 纯小白&#xff0c;找了半天的镜像源安装qtcreator&#xff0c;搞了半天结果安装的是最新的&#xff0c;太新的对小白很不友好&#xff0c;bug比较多&#xff0c;支持的系统也不全&#xff0c;口碑不…

【SCI绘图】【小提琴系列1 python】绘制按分类变量分组的垂直小提琴图

SCI&#xff0c;CCF&#xff0c;EI及核心期刊绘图宝典&#xff0c;爆款持续更新&#xff0c;助力科研&#xff01; 本期分享&#xff1a; 【SCI绘图】【小提琴系列1 python】绘制按分类变量分组的垂直小提琴图&#xff0c;文末附完整代码 小提琴图是一种常用的数据可视化工具…

鸿蒙原生应用已超4000个!

鸿蒙原生应用已超4000个&#xff01; 来自 HarmonyOS 微博近期消息&#xff0c;#鸿蒙千帆起# 重大里程碑&#xff01;目前已有超4000个应用加入鸿蒙生态。从今年1月18日华为宣布首批200多家应用厂商正在加速开发鸿蒙原生应用&#xff0c;到3月底超4000个应用&#xff0c;短短…

约跑小程序源码(asp.net+vue+element++uniapp+sqlserver)

开发语言&#xff1a;c# 框架&#xff1a;后端 asp.net mvc pc管理页面&#xff1a;vueelement 数据库&#xff1a;sqlserver 开发软件&#xff1a;eclipse/myeclipse/idea 浏览器&#xff1a;谷歌浏览器 小程序框架&#xff1a;uniapp 小程序开发软件&#xff1a;HBuilder X …

PyCharm关闭项目后等待时间长

每次关闭项目或PyCharm时&#xff0c;会显示正在关闭项目&#xff0c;而这个关闭时间很长且不可确定&#xff0c;很浪费我们的时间&#xff0c;不过愿意等的话&#xff0c;倒也是可以。 解决方法 Help -> Find Action -> 查找 Registry -> 禁用 ide.await.scope.comp…

ChatGPT基础(一) GPT的前世今生

文章目录 GPT模型简史GPT系列模型ChatGPT的应用 最近ChatGPT3.5可以免注册使用了&#xff0c;出来刨一波坟 说一说ChatGPT的来源和应用。 GPT模型简史 Generative pre-trained transformers(GPT)生成式预训练转换模型是大语言模型的一种(Large Language Model–>LLM)。它是…

PPT在线压缩工具推荐

有时候使用邮箱发送邮件时&#xff0c;添加的PPT、Word、PDF文档总会因为过大而转为其他类型的附件发送&#xff0c;不仅上传缓慢&#xff0c;对方查收下载时还有有效期限制&#xff0c;7天或15天后就过期再也无法下载了&#xff0c;有没有什么办法可以压缩PPT等文档&#xff0…

【QT+QGIS跨平台编译】076:【libdxfrw跨平台编译】(一套代码、一套框架,跨平台编译)

点击查看专栏目录 文章目录 一、libdxfrw介绍二、QGIS下载三、文件分析四、pro文件五、编译实践一、libdxfrw介绍 libdxfrw是一个用于读取和写入DXF(Drawing Exchange Format)文件的开源C++库。DXF是一种由AutoCAD开发的文件格式,用于存储CAD(计算机辅助设计)图形数据,它…

【大数据】安装hive-3.1.2

1、上传HIVE包到/opt/software目录并解压到/opt/modules/ tar -zxvf apache-hive-3.1.2-bin.tar.gz -C /opt/modules/ 2、修改路径 mv /opt/modules/apache-hive-3.1.2-bin/ /opt/modules/hive 3、将hIVE下的bin目录加入到/etc/profile中 export HIVE_HOME/opt/module…

3d怎么在一块模型上开个孔---模大狮模型网

在进行3D建模时&#xff0c;有时候需要在模型上创建孔&#xff0c;以实现特定的设计需求或功能。无论是为了添加细节&#xff0c;还是为了实现功能性的要求&#xff0c;创建孔都是常见的操作之一。本文将介绍在3D模型上创建孔的几种常用方法&#xff0c;帮助您轻松实现这一目标…

pytorch 演示 tensor并行

pytorch 演示 tensor并行 一.原理二.实现代码 本文演示了tensor并行的原理。如何将二个mlp切分到多张GPU上分别计算自己的分块,最后做一次reduce。 1.为了避免中间数据产生集合通信,A矩阵只能列切分,只计算全部batch*seqlen的部分feature 2.因为上面的步骤每张GPU只有部分featu…

2024 Tuxera NTFS for Mac功能介绍及如何安装使用

随着科技的发展&#xff0c;我们的日常生活和工作越来越依赖于电子设备。而在这些设备中&#xff0c;Mac由于其出色的稳定性和易用性&#xff0c;成为了许多用户的首选。然而&#xff0c;尽管Mac自带的文件系统已经足够强大&#xff0c;但仍有一些用户希望获得更加高效、稳定的…

【氮化镓】在轨实验研究辐射对GaN器件的影响

【Pioneering evaluation of GaN transistors in geostationary satellites】 摘要&#xff1a; 这篇论文介绍了一项为期6年的空间实验结果&#xff0c;该实验研究了在地球静止轨道上辐射对氮化镓&#xff08;GaN&#xff09;电子元件的影响。实验使用了四个GaN晶体管&#xf…

如何水出第一篇SCI:SCI发刊历程,从0到1全过程经验分享!!!

如何水出第一篇SCI&#xff1a;SCI发刊历程&#xff0c;从0到1全路程经验分享&#xff01;&#xff01;&#xff01; 详细的改进教程以及源码&#xff0c;戳这&#xff01;戳这&#xff01;&#xff01;戳这&#xff01;&#xff01;&#xff01;B站&#xff1a;Ai学术叫叫兽e…

WPS解决插入公式在正文带来行间距变大问题

问题描述 写论文解释公式时&#xff0c;插入对应的变量&#xff0c;导致行间距变大&#xff0c;如图 显然上文与下文行间距不等。但无法通过修改数值修改下文行间距。 解决办法