机器学习软件perming的使用文档

perming

本文作者的Github账号是linjing-lab,PyPI账户是DeeGLMath

perming: Perceptron Models Are Training on Windows Platform with Default GPU Acceleration.

  • p: use polars or pandas to read dataset.
  • per: perceptron algorithm used as based model.
  • m: models include Box, Regressier, Binarier, Mutipler and Ranker.
  • ing: training on windows platform with strong gpu acceleration.

init backend

refer to https://pytorch.org/get-started/locally/ and choose PyTorch to support cuda compatible with your Windows.

tests with: PyTorch 1.7.1+cu101

advices

  • If users don’t want to encounter CUDA out of memory return from joblib.parallel, the best solution is to download v1.9.2 or before v1.6.1.
  • If users have no plan to retrain a full network in tuning model, the best solution is to download versions after v1.8.0 which support set_freeze.
  • If users are not conducting experiments on Jupyter, download versions after v1.7.* will accelerate train_val process and reduce redundancy.

parameters

init:

  • input_: int, feature dimensions of tabular datasets after extract, transform, load from any data sources.
  • num_classes: int, define numbers of classes or outputs after users defined the type of task with layer output.
  • hidden_layer_sizes: Tuple[int]=(100,), define numbers and sizes of hidden layers to enhance model representation.
  • device: str=‘cuda’, configure training and validation device with torch.device options. ‘cuda’ or ‘cpu’.
  • activation: str=‘relu’, configure activation function combined with subsequent learning task. see _activate in open models.
  • inplace_on: bool=False, configure whether to enable inplace=True on activation. False or True. (manually set in Box)
  • criterion: str=‘CrossEntropyLoss’, configure loss criterion with compatible learning task output. see _criterion in open models.
  • solver: str=‘adam’, configure inner optimizer serve as learning solver for learning task. see _solver in _utils/BaseModel.
  • batch_size: int=32, define batch size on loaded dataset of one epoch training process. any int value > 0. (prefer 2^n)
  • learning_rate_init: float=1e-2, define initial learning rate of solver input param controled by inner assertion. (1e-6, 1.0).
  • lr_scheduler: Optional[str]=None, configure scheduler about learning rate decay for compatible use. see _scheduler in _utils/BaseModel.

data_loader:

  • features: TabularData, manually input by users.
  • target: TabularData, manually input by users.
  • ratio_set: Dict[str, int]={‘train’: 8, ‘test’: 1, ‘val’: 1}, define by users.
  • worker_set: Dict[str, int]={‘train’: 8, ‘test’: 2, ‘val’: 1}, manually set by users need.
  • random_seed: Optional[int]=None, manually set any int value by users to fixed sequence.

set_freeze:

  • require_grad: Dict[int, bool], manually set freezed layers by given serial numbers according to self.model. (if users set require_grad with {0: False}, it means freeze the first layer of self.model.)

train_val:

  • num_epochs: int=2, define numbers of epochs in main training cycle. any int value > 0.
  • interval: int=100

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/796466.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

lua学习笔记5(分支结构和循环的学习)

print("*****************分支结构和循环的学习******************") print("*****************if else语句******************") --if 条件 then end a660 b670 --单分支 if a<b thenprint(a) end --双分支 if a>b thenprint("满足条件")…

C#操作MySQL从入门到精通(5)——查询数据

前言 在和MySql数据库交互的过程中,查询数据是使用最频繁的操作,本文详细介绍了查询数据的各种操作,包括查询一列数据、 查询两列数据、查询所有列数据、查询不重复的数据、查询指定行数据,绝对是C#操作MySql数据库史上最详细教程,能够帮助小白快速入门以及将这些功能迅速…

京东云4C8G服务器优惠价格418元1年,轻量云主机4核8G配置

京东云服务器优惠活动4C8G服务器配置418元一年&#xff0c;1899元3年&#xff0c;配置为轻量云主机4C8G-180G SSD系统盘-5M带宽-500G月流量&#xff0c;京东云服务器活动页面 jdyfwq.com 可以查看京东云服务器详细配置和精准报价单&#xff0c;活动打开如下图&#xff1a; 轻量…

sharding‐jdbc之分库分表实战

数据库表结构 店铺数据库 SET NAMES utf8mb4; SET FOREIGN_KEY_CHECKS 0;-- ---------------------------- -- Table structure for region -- ---------------------------- DROP TABLE IF EXISTS region; CREATE TABLE region (id bigint(20) NOT NULL COMMENT id,region_…

上位机图像处理和嵌入式模块部署(qmacvisual实时视频)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 前面我们测试和练习的时候&#xff0c;大部分情况下都是利用图像进行测试的&#xff0c;但是实际情况下&#xff0c;或者准确一点说&#xff0c;工…

android 制作登录页

项目需要可以直接copy layout.xml <?xml version"1.0" encoding"utf-8"?> <RelativeLayout xmlns:android"http://schemas.android.com/apk/res/android"android:layout_width"match_parent"android:layout_height"…

华为汽车的“计算+通信”电子电气架构

文章目录 整车结构 硬件平台 软件平台 总结展望 整车EEA&#xff08;电子电气架构&#xff09;&#xff0c;按照博世提出的演进路径&#xff0c;大致可以划分为四个阶段&#xff1a;分布式模块阶段、区域控制阶段、中央计算阶段、云计算阶段。示例如下&#xff1a; 本文选取…

【Node.js】短链接

原文链接&#xff1a;Nodejs 第六十二章&#xff08;短链接&#xff09; - 掘金 (juejin.cn) 短链接是一种缩短长网址的方法&#xff0c;将原始的长网址转换为更短的形式。短链接的主要用途之一是在社交媒体平台进行链接分享。由于这些平台对字符数量有限制&#xff0c;长网址可…

c# wpf LiveCharts 绑定 简单试验

1.概要 c# wpf LiveCharts 绑定 简单试验 2.代码 <Window x:Class"WpfApp3.Window2"xmlns"http://schemas.microsoft.com/winfx/2006/xaml/presentation"xmlns:x"http://schemas.microsoft.com/winfx/2006/xaml"xmlns:d"http://schem…

K8S基于containerd做容器从harbor拉取镜

实现创建pod时&#xff0c;通过指定harbor仓库里的镜像来运行pod 检查&#xff1a;K8S是不是用containerd做容器运行时&#xff0c;以及containerd的版本是不是小于1.6.22 kubectl get nodes -owide1、如果containerd小于 1.6.22&#xff0c;需要先升级containerd 先卸载旧的…

Note-模型的特征学习过程分析

模型的学习过程 将数据的特征分为,有用特征和无用特征(噪声).有用特征与任务有关,无用特征与任务无关. 模型的学习过程就是增大有用特征的权重并减少无用特征的权重的过程. 神经网络反向传播过程简化如下: y a 0 x 0 a 1 x 1 , l o s s 0.5 ∗ ( y l a b e l − y ) 2 y …

数据结构和算法:分治

分治算法 分治&#xff08;divide and conquer&#xff09;&#xff0c;全称分而治之&#xff0c;是一种非常重要且常见的算法策略。分治通常基于递归实现&#xff0c;包括“分”和“治”两个步骤。 1.分&#xff08;划分阶段&#xff09;&#xff1a;递归地将原问题分解为两个…

DNFOMP:杂乱环境中自动驾驶汽车导航的动态神经场最优运动规划器

DNFOMP&#xff1a;杂乱环境中自动驾驶汽车导航的动态神经场最优运动规划器 附赠自动驾驶学习资料和量产经验&#xff1a;链接 摘要 本文介绍了DNFOMP&#xff1a;杂乱环境中自动驾驶汽车导航的动态神经场最优运动规划器。动态变化环境中的运动规划是自动驾驶中最复杂的挑战之…

cycle GAN

import os os.environ[TF_CPP_MIN_LOG_LEVEL] = 2#设置tensorflow的日志级别 from tensorflow.python.platform import build_info import tensorflow as tf # 列出所有物理GPU设备 gpus = tf.config.list_physical_devices(GPU) if gpus: # 如果有GPU,设置GPU资源…

【学习分享】小白写算法之插入排序篇

【学习分享】小白写算法之插入排序篇 前言一、什么是插入排序算法二、插入排序算法如何实现三、C语言实现算法四、复杂度计算五、算法稳定性六、小结 前言 要学好每个算法&#xff0c;我觉得需要先总结出规律&#xff0c;然后自己去推演一遍&#xff0c;加深记忆&#xff0c;否…

【Java设计模式】创建型——抽象工厂模式

目录 背景/问题解决方案&#xff1a;抽象工厂模式解析生活场景模拟上一章的案例图解 意图主要解决何时使用如何解决关键代码抽象工厂模式涉及多个角色&#xff1a; 代码示例优点缺点应用场景 背景/问题 在某些情况下&#xff0c;需要创建一系列相关或相互依赖的对象&#xff0…

线程池详解并使用Go语言实现 Pool

写在前面 在线程池中存在几个概念&#xff1a;核心线程数、最大线程数、任务队列。 核心线程数指的是线程池的基本大小&#xff1b;也就是指worker的数量最大线程数指的是&#xff0c;同一时刻线程池中线程的数量最大不能超过该值&#xff1b;实际上就是指task任务的数量。任务…

MacOS下载和安装HomeBrew的详细教程

在MacOS上安装Homebrew的详细教程如下&#xff1a;&#xff08;参考官网&#xff1a;macOS&#xff08;或 Linux&#xff09;缺失的软件包的管理器 — Homebrew&#xff09; 步骤1&#xff1a;检查系统要求 确保你的MacOS版本至少为macOS Monterey (12) (or higher) 或更高版本…

在单交换机局域网中,不同网段的主机通信探秘

在理解局域网中不同网段主机之间的通信之前&#xff0c;我们首先要明白网络的基本组成和工作原理。局域网&#xff08;LAN&#xff09;是一个封闭的网络环境&#xff0c;通常由交换机&#xff08;Switch&#xff09;作为核心设备连接网络中的各个主机。当我们谈论不同网段的主机…

Github 2024-04-06Rust开源项目日报Top10

根据Github Trendings的统计,今日(2024-04-06统计)共有10个项目上榜。根据开发语言中项目的数量,汇总情况如下: 开发语言项目数量Rust项目10HTML项目1Dart项目1RustDesk: 用Rust编写的开源远程桌面软件 创建周期:1218 天开发语言:Rust, Dart协议类型:GNU Affero General …