NIO基础知识

在学习Netty之前先要学习一下NIO相关的知识,因为Netty是基于NIO搭建的一套网络编程框架。

一. NIO 基础

non-blocking io 非阻塞 IO

1. 三大组件

1.1 Channel & Buffer

channel 有一点类似于 stream,它就是读写数据的双向通道,可以从 channel 将数据读入 buffer,也可以将 buffer 的数据写入 channel,而之前的 stream 要么是输入,要么是输出,channel 比 stream 更为底层

 

常见的 Channel 有

  • FileChannel

  • DatagramChannel

  • SocketChannel

  • ServerSocketChannel

buffer 则用来缓冲读写数据,常见的 buffer 有

  • ByteBuffer

    • MappedByteBuffer

    • DirectByteBuffer

    • HeapByteBuffer

  • ShortBuffer

  • IntBuffer

  • LongBuffer

  • FloatBuffer

  • DoubleBuffer

  • CharBuffer

1.2 Selector

selector 单从字面意思不好理解,需要结合服务器的设计演化来理解它的用途

多线程版设计 

⚠️ 多线程版缺点

  • 内存占用高

  • 线程上下文切换成本高

  • 只适合连接数少的场景

线程池版设计

⚠️ 线程池版缺点

  • 阻塞模式下,线程仅能处理一个 socket 连接

  • 仅适合短连接场景

selector 版设计

selector 的作用就是配合一个线程来管理多个 channel,获取这些 channel 上发生的事件,这些 channel 工作在非阻塞模式下,不会让线程吊死在一个 channel 上。适合连接数特别多,但流量低的场景(low traffic)

 

调用 selector 的 select() 会阻塞当前线程直到 channel 发生了读写就绪事件,这些事件发生,select 方法就会返回这些事件交给 thread 来处理

2. ByteBuffer

有一普通文本文件 data.txt,内容为

1234567890abcd

使用 FileChannel 来读取文件内容

@Slf4j
public class ChannelDemo1 {public static void main(String[] args) {try (RandomAccessFile file = new RandomAccessFile("helloword/data.txt", "rw")) {FileChannel channel = file.getChannel();ByteBuffer buffer = ByteBuffer.allocate(10);do {// 向 buffer 写入int len = channel.read(buffer);log.debug("读到字节数:{}", len);if (len == -1) {break;}// 切换 buffer 读模式buffer.flip();while(buffer.hasRemaining()) {log.debug("{}", (char)buffer.get());}// 切换 buffer 写模式buffer.clear();} while (true);} catch (IOException e) {e.printStackTrace();}}
}

输出

10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 读到字节数:10
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 1
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 2
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 3
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 4
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 5
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 6
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 7
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 8
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 9
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 0
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 读到字节数:4
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - a
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - b
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - c
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - d
10:39:03 [DEBUG] [main] c.i.n.ChannelDemo1 - 读到字节数:-1

2.1 ByteBuffer 正确使用姿势

  1. 向 buffer 写入数据,例如调用 channel.read(buffer)

  2. 调用 flip() 切换至读模式

  3. 从 buffer 读取数据,例如调用 buffer.get()

  4. 调用 clear() 或 compact() 切换至写模式

  5. 重复 1~4 步骤

2.2 ByteBuffer 结构

ByteBuffer 有以下重要属性

  • capacity

  • position(读写指针)

  • limit

一开始

写模式下,position 是写入位置,limit 等于容量,下图表示写入了 4 个字节后的状态

flip 动作发生后,position 切换为读取位置,limit 切换为读取限制

读取 4 个字节后,状态

clear 动作发生后,状态

compact 方法,是把未读完的部分向前压缩,然后切换至写模式

💡 调试工具类

public class ByteBufferUtil {private static final char[] BYTE2CHAR = new char[256];private static final char[] HEXDUMP_TABLE = new char[256 * 4];private static final String[] HEXPADDING = new String[16];private static final String[] HEXDUMP_ROWPREFIXES = new String[65536 >>> 4];private static final String[] BYTE2HEX = new String[256];private static final String[] BYTEPADDING = new String[16];
​static {final char[] DIGITS = "0123456789abcdef".toCharArray();for (int i = 0; i < 256; i++) {HEXDUMP_TABLE[i << 1] = DIGITS[i >>> 4 & 0x0F];HEXDUMP_TABLE[(i << 1) + 1] = DIGITS[i & 0x0F];}
​int i;
​// Generate the lookup table for hex dump paddingsfor (i = 0; i < HEXPADDING.length; i++) {int padding = HEXPADDING.length - i;StringBuilder buf = new StringBuilder(padding * 3);for (int j = 0; j < padding; j++) {buf.append("   ");}HEXPADDING[i] = buf.toString();}
​// Generate the lookup table for the start-offset header in each row (up to 64KiB).for (i = 0; i < HEXDUMP_ROWPREFIXES.length; i++) {StringBuilder buf = new StringBuilder(12);buf.append(NEWLINE);buf.append(Long.toHexString(i << 4 & 0xFFFFFFFFL | 0x100000000L));buf.setCharAt(buf.length() - 9, '|');buf.append('|');HEXDUMP_ROWPREFIXES[i] = buf.toString();}
​// Generate the lookup table for byte-to-hex-dump conversionfor (i = 0; i < BYTE2HEX.length; i++) {BYTE2HEX[i] = ' ' + StringUtil.byteToHexStringPadded(i);}
​// Generate the lookup table for byte dump paddingsfor (i = 0; i < BYTEPADDING.length; i++) {int padding = BYTEPADDING.length - i;StringBuilder buf = new StringBuilder(padding);for (int j = 0; j < padding; j++) {buf.append(' ');}BYTEPADDING[i] = buf.toString();}
​// Generate the lookup table for byte-to-char conversionfor (i = 0; i < BYTE2CHAR.length; i++) {if (i <= 0x1f || i >= 0x7f) {BYTE2CHAR[i] = '.';} else {BYTE2CHAR[i] = (char) i;}}}
​/*** 打印所有内容* @param buffer*/public static void debugAll(ByteBuffer buffer) {int oldlimit = buffer.limit();buffer.limit(buffer.capacity());StringBuilder origin = new StringBuilder(256);appendPrettyHexDump(origin, buffer, 0, buffer.capacity());System.out.println("+--------+-------------------- all ------------------------+----------------+");System.out.printf("position: [%d], limit: [%d]\n", buffer.position(), oldlimit);System.out.println(origin);buffer.limit(oldlimit);}
​/*** 打印可读取内容* @param buffer*/public static void debugRead(ByteBuffer buffer) {StringBuilder builder = new StringBuilder(256);appendPrettyHexDump(builder, buffer, buffer.position(), buffer.limit() - buffer.position());System.out.println("+--------+-------------------- read -----------------------+----------------+");System.out.printf("position: [%d], limit: [%d]\n", buffer.position(), buffer.limit());System.out.println(builder);}
​private static void appendPrettyHexDump(StringBuilder dump, ByteBuffer buf, int offset, int length) {if (isOutOfBounds(offset, length, buf.capacity())) {throw new IndexOutOfBoundsException("expected: " + "0 <= offset(" + offset + ") <= offset + length(" + length+ ") <= " + "buf.capacity(" + buf.capacity() + ')');}if (length == 0) {return;}dump.append("         +-------------------------------------------------+" +NEWLINE + "         |  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |" +NEWLINE + "+--------+-------------------------------------------------+----------------+");
​final int startIndex = offset;final int fullRows = length >>> 4;final int remainder = length & 0xF;
​// Dump the rows which have 16 bytes.for (int row = 0; row < fullRows; row++) {int rowStartIndex = (row << 4) + startIndex;
​// Per-row prefix.appendHexDumpRowPrefix(dump, row, rowStartIndex);
​// Hex dumpint rowEndIndex = rowStartIndex + 16;for (int j = rowStartIndex; j < rowEndIndex; j++) {dump.append(BYTE2HEX[getUnsignedByte(buf, j)]);}dump.append(" |");
​// ASCII dumpfor (int j = rowStartIndex; j < rowEndIndex; j++) {dump.append(BYTE2CHAR[getUnsignedByte(buf, j)]);}dump.append('|');}
​// Dump the last row which has less than 16 bytes.if (remainder != 0) {int rowStartIndex = (fullRows << 4) + startIndex;appendHexDumpRowPrefix(dump, fullRows, rowStartIndex);
​// Hex dumpint rowEndIndex = rowStartIndex + remainder;for (int j = rowStartIndex; j < rowEndIndex; j++) {dump.append(BYTE2HEX[getUnsignedByte(buf, j)]);}dump.append(HEXPADDING[remainder]);dump.append(" |");
​// Ascii dumpfor (int j = rowStartIndex; j < rowEndIndex; j++) {dump.append(BYTE2CHAR[getUnsignedByte(buf, j)]);}dump.append(BYTEPADDING[remainder]);dump.append('|');}
​dump.append(NEWLINE +"+--------+-------------------------------------------------+----------------+");}
​private static void appendHexDumpRowPrefix(StringBuilder dump, int row, int rowStartIndex) {if (row < HEXDUMP_ROWPREFIXES.length) {dump.append(HEXDUMP_ROWPREFIXES[row]);} else {dump.append(NEWLINE);dump.append(Long.toHexString(rowStartIndex & 0xFFFFFFFFL | 0x100000000L));dump.setCharAt(dump.length() - 9, '|');dump.append('|');}}
​public static short getUnsignedByte(ByteBuffer buffer, int index) {return (short) (buffer.get(index) & 0xFF);}
}

2.3 ByteBuffer 常见方法

分配空间

可以使用 allocate 方法为 ByteBuffer 分配空间,其它 buffer 类也有该方法

Bytebuffer buf = ByteBuffer.allocate(16);

class java.nio.HeapByteBuffer - java 堆内存,读写效率较低,受到 GC 的影响
class java.nio.DirectByteBuffer - 直接内存,读写效率高(少一次拷贝),不会受 GC 影响,分配的效率低

向 buffer 写入数据

有两种办法

  • 调用 channel 的 read 方法

  • 调用 buffer 自己的 put 方法

int readBytes = channel.read(buf);

buf.put((byte)127);

从 buffer 读取数据

同样有两种办法

  • 调用 channel 的 write 方法

  • 调用 buffer 自己的 get 方法

int writeBytes = channel.write(buf);

byte b = buf.get();

get 方法会让 position 读指针向后走,如果想重复读取数据

  • 可以调用 rewind 方法将 position 重新置为 0

  • 或者调用 get(int i) 方法获取索引 i 的内容,它不会移动读指针

mark 和 reset

mark 是在读取时,做一个标记,即使 position 改变,只要调用 reset 就能回到 mark 的位置

注意

rewind 和 flip 都会清除 mark 位置

字符串与 ByteBuffer 互转
public class TestByteBufferString {public static void main(String[] args) {// 1. 字符串转为 ByteBufferByteBuffer buffer1 = ByteBuffer.allocate(16);buffer1.put("hello".getBytes());debugAll(buffer1);// 2. CharsetByteBuffer buffer2 = StandardCharsets.UTF_8.encode("hello");debugAll(buffer2);// 3. wrapByteBuffer buffer3 = ByteBuffer.wrap("hello".getBytes());debugAll(buffer3);// 4. 转为字符串String str1 = StandardCharsets.UTF_8.decode(buffer2).toString();System.out.println(str1);buffer1.flip();String str2 = StandardCharsets.UTF_8.decode(buffer1).toString();System.out.println(str2);}
}

输出

 

⚠️ Buffer 的线程安全

Buffer 是非线程安全的

2.4 Scattering Reads

分散读取,有一个文本文件 3parts.txt

onetwothree

使用如下方式读取,可以将数据填充至多个 buffer

public class TestScatteringReads {public static void main(String[] args) {try (FileChannel channel = new RandomAccessFile("words.txt", "r").getChannel()) {ByteBuffer b1 = ByteBuffer.allocate(3);ByteBuffer b2 = ByteBuffer.allocate(3);ByteBuffer b3 = ByteBuffer.allocate(5);channel.read(new ByteBuffer[]{b1, b2, b3});b1.flip();b2.flip();b3.flip();debugAll(b1);debugAll(b2);debugAll(b3);} catch (IOException e) {}}
}

2.5 Gathering Writes

使用如下方式写入,可以将多个 buffer 的数据填充至 channel

public class TestGatheringWrites {public static void main(String[] args) {ByteBuffer b1 = StandardCharsets.UTF_8.encode("hello");ByteBuffer b2 = StandardCharsets.UTF_8.encode("world");ByteBuffer b3 = StandardCharsets.UTF_8.encode("你好");try (FileChannel channel = new RandomAccessFile("words2.txt", "rw").getChannel()) {channel.write(new ByteBuffer[]{b1, b2, b3});} catch (IOException e) {}}
}

2.6 练习

网络上有多条数据发送给服务端,数据之间使用 \n 进行分隔但由于某种原因这些数据在接收时,被进行了重新组合,例如原始数据有3条为

  • Hello,world\n

  • I'm zhangsan\n

  • How are you?\n

变成了下面的两个 byteBuffer (黏包,半包)

  • Hello,world\nI'm zhangsan\nHo

  • w are you?\n

现在要求你编写程序,将错乱的数据恢复成原始的按 \n 分隔的数据

public static void main(String[] args) {ByteBuffer source = ByteBuffer.allocate(32);//                     11            24source.put("Hello,world\nI'm zhangsan\nHo".getBytes());split(source);
​source.put("w are you?\nhaha!\n".getBytes());split(source);
}
​
private static void split(ByteBuffer source) {source.flip();int oldLimit = source.limit();for (int i = 0; i < oldLimit; i++) {if (source.get(i) == '\n') {System.out.println(i);ByteBuffer target = ByteBuffer.allocate(i + 1 - source.position());// 0 ~ limitsource.limit(i + 1);target.put(source); // 从source 读,向 target 写debugAll(target);source.limit(oldLimit);}}source.compact();
}

3. 文件编程

3.1 FileChannel

⚠️ FileChannel 工作模式

FileChannel 只能工作在阻塞模式

获取

不能直接打开 FileChannel,必须通过 FileInputStream、FileOutputStream 或者 RandomAccessFile 来获取 FileChannel,它们都有 getChannel 方法

  • 通过 FileInputStream 获取的 channel 只能读

  • 通过 FileOutputStream 获取的 channel 只能写

  • 通过 RandomAccessFile 是否能读写根据构造 RandomAccessFile 时的读写模式决定

读取

会从 channel 读取数据填充 ByteBuffer,返回值表示读到了多少字节,-1 表示到达了文件的末尾

int readBytes = channel.read(buffer);
写入

写入的正确姿势如下, SocketChannel

ByteBuffer buffer = ...;
buffer.put(...); // 存入数据
buffer.flip();   // 切换读模式
​
while(buffer.hasRemaining()) {channel.write(buffer);
}

在 while 中调用 channel.write 是因为 write 方法并不能保证一次将 buffer 中的内容全部写入 channel

关闭

channel 必须关闭,不过调用了 FileInputStream、FileOutputStream 或者 RandomAccessFile 的 close 方法会间接地调用 channel 的 close 方法

位置

获取当前位置

long pos = channel.position();

设置当前位置

long newPos = ...;
channel.position(newPos);

设置当前位置时,如果设置为文件的末尾

  • 这时读取会返回 -1

  • 这时写入,会追加内容,但要注意如果 position 超过了文件末尾,再写入时在新内容和原末尾之间会有空洞(00)

大小

使用 size 方法获取文件的大小

强制写入

操作系统出于性能的考虑,会将数据缓存,不是立刻写入磁盘。可以调用 force(true) 方法将文件内容和元数据(文件的权限等信息)立刻写入磁盘

3.2 两个 Channel 传输数据

String FROM = "helloword/data.txt";
String TO = "helloword/to.txt";
long start = System.nanoTime();
try (FileChannel from = new FileInputStream(FROM).getChannel();FileChannel to = new FileOutputStream(TO).getChannel();) {from.transferTo(0, from.size(), to);
} catch (IOException e) {e.printStackTrace();
}
long end = System.nanoTime();
System.out.println("transferTo 用时:" + (end - start) / 1000_000.0);

输出

transferTo 用时:8.2011

超过 2g 大小的文件传输(注意channel一次性最大的数据传输量为channel)

public class TestFileChannelTransferTo {public static void main(String[] args) {try (FileChannel from = new FileInputStream("data.txt").getChannel();FileChannel to = new FileOutputStream("to.txt").getChannel();) {// 效率高,底层会利用操作系统的零拷贝进行优化long size = from.size();// left 变量代表还剩余多少字节for (long left = size; left > 0; ) {System.out.println("position:" + (size - left) + " left:" + left);left -= from.transferTo((size - left), left, to);}} catch (IOException e) {e.printStackTrace();}}
}

实际传输一个超大文件

position:0 left:7769948160
position:2147483647 left:5622464513
position:4294967294 left:3474980866
position:6442450941 left:1327497219

3.3 Path

jdk7 引入了 Path 和 Paths 类

  • Path 用来表示文件路径

  • Paths 是工具类,用来获取 Path 实例

Path source = Paths.get("1.txt"); // 相对路径 使用 user.dir 环境变量来定位 1.txt
​
Path source = Paths.get("d:\\1.txt"); // 绝对路径 代表了  d:\1.txt
​
Path source = Paths.get("d:/1.txt"); // 绝对路径 同样代表了  d:\1.txt
​
Path projects = Paths.get("d:\\data", "projects"); // 代表了  d:\data\projects
  • . 代表了当前路径

  • .. 代表了上一级路径

例如目录结构如下

d:|- data|- projects|- a|- b

代码

Path path = Paths.get("d:\\data\\projects\\a\\..\\b");
System.out.println(path);
System.out.println(path.normalize()); // 正常化路径

会输出

d:\data\projects\a\..\b
d:\data\projects\b

3.4 Files

检查文件是否存在

Path path = Paths.get("helloword/data.txt");
System.out.println(Files.exists(path));

创建一级目录

Path path = Paths.get("helloword/d1");
Files.createDirectory(path);
  • 如果目录已存在,会抛异常 FileAlreadyExistsException

  • 不能一次创建多级目录,否则会抛异常 NoSuchFileException

创建多级目录用

Path path = Paths.get("helloword/d1/d2");
Files.createDirectories(path);

拷贝文件

Path source = Paths.get("helloword/data.txt");
Path target = Paths.get("helloword/target.txt");
​
Files.copy(source, target);
  • 如果文件已存在,会抛异常 FileAlreadyExistsException

如果希望用 source 覆盖掉 target,需要用 StandardCopyOption 来控制

Files.copy(source, target, StandardCopyOption.REPLACE_EXISTING);

移动文件

Path source = Paths.get("helloword/data.txt");
Path target = Paths.get("helloword/data.txt");
​
Files.move(source, target, StandardCopyOption.ATOMIC_MOVE);
  • StandardCopyOption.ATOMIC_MOVE 保证文件移动的原子性

删除文件

Path target = Paths.get("helloword/target.txt");
​
Files.delete(target);
  • 如果文件不存在,会抛异常 NoSuchFileException

删除目录

Path target = Paths.get("helloword/d1");
​
Files.delete(target);
  • 如果目录还有内容,会抛异常 DirectoryNotEmptyException

遍历目录文件

public static void main(String[] args) throws IOException {Path path = Paths.get("C:\\Program Files\\Java\\jdk1.8.0_91");AtomicInteger dirCount = new AtomicInteger();AtomicInteger fileCount = new AtomicInteger();Files.walkFileTree(path, new SimpleFileVisitor<Path>(){@Overridepublic FileVisitResult preVisitDirectory(Path dir, BasicFileAttributes attrs) throws IOException {System.out.println(dir);dirCount.incrementAndGet();return super.preVisitDirectory(dir, attrs);}
​@Overridepublic FileVisitResult visitFile(Path file, BasicFileAttributes attrs) throws IOException {System.out.println(file);fileCount.incrementAndGet();return super.visitFile(file, attrs);}});System.out.println(dirCount); // 133System.out.println(fileCount); // 1479
}

统计 jar 的数目

Path path = Paths.get("C:\\Program Files\\Java\\jdk1.8.0_91");
AtomicInteger fileCount = new AtomicInteger();
Files.walkFileTree(path, new SimpleFileVisitor<Path>(){@Overridepublic FileVisitResult visitFile(Path file, BasicFileAttributes attrs) throws IOException {if (file.toFile().getName().endsWith(".jar")) {fileCount.incrementAndGet();}return super.visitFile(file, attrs);}
});
System.out.println(fileCount); // 724

删除多级目录

Path path = Paths.get("d:\\a");
Files.walkFileTree(path, new SimpleFileVisitor<Path>(){@Overridepublic FileVisitResult visitFile(Path file, BasicFileAttributes attrs) throws IOException {Files.delete(file);return super.visitFile(file, attrs);}
​@Overridepublic FileVisitResult postVisitDirectory(Path dir, IOException exc) throws IOException {Files.delete(dir);return super.postVisitDirectory(dir, exc);}
});

⚠️ 删除很危险

删除是危险操作,确保要递归删除的文件夹没有重要内容

拷贝多级目录

long start = System.currentTimeMillis();
String source = "D:\\Snipaste-1.16.2-x64";
String target = "D:\\Snipaste-1.16.2-x64aaa";
​
Files.walk(Paths.get(source)).forEach(path -> {try {String targetName = path.toString().replace(source, target);// 是目录if (Files.isDirectory(path)) {Files.createDirectory(Paths.get(targetName));}// 是普通文件else if (Files.isRegularFile(path)) {Files.copy(path, Paths.get(targetName));}} catch (IOException e) {e.printStackTrace();}
});
long end = System.currentTimeMillis();
System.out.println(end - start);

4. 网络编程

4.1 非阻塞 vs 阻塞

阻塞

  • 阻塞模式下,相关方法都会导致线程暂停

    • ServerSocketChannel.accept 会在没有连接建立时让线程暂停

    • SocketChannel.read 会在没有数据可读时让线程暂停

    • 阻塞的表现其实就是线程暂停了,暂停期间不会占用 cpu,但线程相当于闲置

  • 单线程下,阻塞方法之间相互影响,几乎不能正常工作,需要多线程支持

  • 但多线程下,有新的问题,体现在以下方面

    • 32 位 jvm 一个线程 320k,64 位 jvm 一个线程 1024k,如果连接数过多,必然导致 OOM,并且线程太多,反而会因为频繁上下文切换导致性能降低

    • 可以采用线程池技术来减少线程数和线程上下文切换,但治标不治本,如果有很多连接建立,但长时间 inactive,会阻塞线程池中所有线程,因此不适合长连接,只适合短连接

服务器端

// 使用 nio 来理解阻塞模式, 单线程
// 0. ByteBuffer
ByteBuffer buffer = ByteBuffer.allocate(16);
// 1. 创建了服务器
ServerSocketChannel ssc = ServerSocketChannel.open();
​
// 2. 绑定监听端口
ssc.bind(new InetSocketAddress(8080));
​
// 3. 连接集合
List<SocketChannel> channels = new ArrayList<>();
while (true) {// 4. accept 建立与客户端连接, SocketChannel 用来与客户端之间通信log.debug("connecting...");SocketChannel sc = ssc.accept(); // 阻塞方法,线程停止运行log.debug("connected... {}", sc);channels.add(sc);for (SocketChannel channel : channels) {// 5. 接收客户端发送的数据log.debug("before read... {}", channel);channel.read(buffer); // 阻塞方法,线程停止运行buffer.flip();debugRead(buffer);buffer.clear();log.debug("after read...{}", channel);}
}

客户端

SocketChannel sc = SocketChannel.open();
sc.connect(new InetSocketAddress("localhost", 8080));
System.out.println("waiting...");

非阻塞

  • 非阻塞模式下,相关方法都会不会让线程暂停

    • 在 ServerSocketChannel.accept 在没有连接建立时,会返回 null,继续运行

    • SocketChannel.read 在没有数据可读时,会返回 0,但线程不必阻塞,可以去执行其它 SocketChannel 的 read 或是去执行 ServerSocketChannel.accept

    • 写数据时,线程只是等待数据写入 Channel 即可,无需等 Channel 通过网络把数据发送出去

  • 但非阻塞模式下,即使没有连接建立,和可读数据,线程仍然在不断运行,白白浪费了 cpu

  • 数据复制过程中,线程实际还是阻塞的(AIO 改进的地方)

服务器端,客户端代码不变

// 使用 nio 来理解非阻塞模式, 单线程
// 0. ByteBuffer
ByteBuffer buffer = ByteBuffer.allocate(16);
// 1. 创建了服务器
ServerSocketChannel ssc = ServerSocketChannel.open();
ssc.configureBlocking(false); // 非阻塞模式
// 2. 绑定监听端口
ssc.bind(new InetSocketAddress(8080));
// 3. 连接集合
List<SocketChannel> channels = new ArrayList<>();
while (true) {// 4. accept 建立与客户端连接, SocketChannel 用来与客户端之间通信SocketChannel sc = ssc.accept(); // 非阻塞,线程还会继续运行,如果没有连接建立,但sc是nullif (sc != null) {log.debug("connected... {}", sc);sc.configureBlocking(false); // 非阻塞模式channels.add(sc);}for (SocketChannel channel : channels) {// 5. 接收客户端发送的数据int read = channel.read(buffer);// 非阻塞,线程仍然会继续运行,如果没有读到数据,read 返回 0if (read > 0) {buffer.flip();debugRead(buffer);buffer.clear();log.debug("after read...{}", channel);}}
}

多路复用

单线程可以配合 Selector 完成对多个 Channel 可读写事件的监控,这称之为多路复用

  • 多路复用仅针对网络 IO、普通文件 IO 没法利用多路复用

  • 如果不用 Selector 的非阻塞模式,线程大部分时间都在做无用功,而 Selector 能够保证

    • 有可连接事件时才去连接

    • 有可读事件才去读取

    • 有可写事件才去写入

      • 限于网络传输能力,Channel 未必时时可写,一旦 Channel 可写,会触发 Selector 的可写事件

4.2 Selector

 

好处

  • 一个线程配合 selector 就可以监控多个 channel 的事件,事件发生线程才去处理。避免非阻塞模式下所做无用功

  • 让这个线程能够被充分利用

  • 节约了线程的数量

  • 减少了线程上下文切换

创建
Selector selector = Selector.open();

绑定 Channel 事件

也称之为注册事件,绑定的事件 selector 才会关心

channel.configureBlocking(false);//设置为非阻塞模式
SelectionKey key = channel.register(selector, 绑定事件);
  • channel 必须工作在非阻塞模式

  • FileChannel 没有非阻塞模式,因此不能配合 selector 一起使用

  • 绑定的事件类型可以有

    • connect - 客户端连接成功时触发

    • accept - 服务器端成功接受连接时触发

    • read - 数据可读入时触发,有因为接收能力弱,数据暂不能读入的情况

    • write - 数据可写出时触发,有因为发送能力弱,数据暂不能写出的情况

监听 Channel 事件

可以通过下面三种方法来监听是否有事件发生,方法的返回值代表有多少 channel 发生了事件

方法1,阻塞直到绑定事件发生

int count = selector.select();

方法2,阻塞直到绑定事件发生,或是超时(时间单位为 ms)

int count = selector.select(long timeout);

方法3,不会阻塞,也就是不管有没有事件,立刻返回,自己根据返回值检查是否有事件

int count = selector.selectNow();

💡 select 何时不阻塞
  • 事件发生时

    • 客户端发起连接请求,会触发 accept 事件

    • 客户端发送数据过来,客户端正常、异常关闭时,都会触发 read 事件,另外如果发送的数据大于 buffer 缓冲区,会触发多次读取事件

    • channel 可写,会触发 write 事件

    • 在 linux 下 nio bug 发生时

  • 调用 selector.wakeup()

  • 调用 selector.close()

  • selector 所在线程 interrupt

4.3 处理 accept 事件

客户端代码为

public class Client {public static void main(String[] args) {try (Socket socket = new Socket("localhost", 8080)) {System.out.println(socket);socket.getOutputStream().write("world".getBytes());System.in.read();} catch (IOException e) {e.printStackTrace();}}
}

服务器端代码为

@Slf4j
public class ChannelDemo6 {public static void main(String[] args) {try (ServerSocketChannel channel = ServerSocketChannel.open()) {channel.bind(new InetSocketAddress(8080));System.out.println(channel);Selector selector = Selector.open();channel.configureBlocking(false);channel.register(selector, SelectionKey.OP_ACCEPT);
​while (true) {int count = selector.select();
//                int count = selector.selectNow();log.debug("select count: {}", count);
//                if(count <= 0) {
//                    continue;
//                }
​// 获取所有事件Set<SelectionKey> keys = selector.selectedKeys();
​// 遍历所有事件,逐一处理Iterator<SelectionKey> iter = keys.iterator();while (iter.hasNext()) {SelectionKey key = iter.next();// 判断事件类型if (key.isAcceptable()) {ServerSocketChannel c = (ServerSocketChannel) key.channel();// 必须处理SocketChannel sc = c.accept();log.debug("{}", sc);}// 处理完毕,必须将事件移除iter.remove();}}} catch (IOException e) {e.printStackTrace();}}
}

💡 事件发生后能否不处理

事件发生后,要么处理,要么取消(cancel),不能什么都不做,否则下次该事件仍会触发,这是因为 nio 底层使用的是水平触发

4.4 处理 read 事件

@Slf4j
public class ChannelDemo6 {public static void main(String[] args) {try (ServerSocketChannel channel = ServerSocketChannel.open()) {channel.bind(new InetSocketAddress(8080));System.out.println(channel);Selector selector = Selector.open();channel.configureBlocking(false);channel.register(selector, SelectionKey.OP_ACCEPT);
​while (true) {int count = selector.select();
//                int count = selector.selectNow();log.debug("select count: {}", count);
//                if(count <= 0) {
//                    continue;
//                }
​// 获取所有事件Set<SelectionKey> keys = selector.selectedKeys();
​// 遍历所有事件,逐一处理Iterator<SelectionKey> iter = keys.iterator();while (iter.hasNext()) {SelectionKey key = iter.next();// 判断事件类型if (key.isAcceptable()) {ServerSocketChannel c = (ServerSocketChannel) key.channel();// 必须处理SocketChannel sc = c.accept();sc.configureBlocking(false);sc.register(selector, SelectionKey.OP_READ);log.debug("连接已建立: {}", sc);} else if (key.isReadable()) {SocketChannel sc = (SocketChannel) key.channel();ByteBuffer buffer = ByteBuffer.allocate(128);int read = sc.read(buffer);if(read == -1) {key.cancel();sc.close();} else {buffer.flip();debug(buffer);}}// 处理完毕,必须将事件移除iter.remove();}}} catch (IOException e) {e.printStackTrace();}}
}

开启两个客户端,修改一下发送文字,输出

sun.nio.ch.ServerSocketChannelImpl[/0:0:0:0:0:0:0:0:8080]
21:16:39 [DEBUG] [main] c.i.n.ChannelDemo6 - select count: 1
21:16:39 [DEBUG] [main] c.i.n.ChannelDemo6 - 连接已建立: java.nio.channels.SocketChannel[connected local=/127.0.0.1:8080 remote=/127.0.0.1:60367]
21:16:39 [DEBUG] [main] c.i.n.ChannelDemo6 - select count: 1+-------------------------------------------------+|  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 68 65 6c 6c 6f                                  |hello           |
+--------+-------------------------------------------------+----------------+
21:16:59 [DEBUG] [main] c.i.n.ChannelDemo6 - select count: 1
21:16:59 [DEBUG] [main] c.i.n.ChannelDemo6 - 连接已建立: java.nio.channels.SocketChannel[connected local=/127.0.0.1:8080 remote=/127.0.0.1:60378]
21:16:59 [DEBUG] [main] c.i.n.ChannelDemo6 - select count: 1+-------------------------------------------------+|  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 77 6f 72 6c 64                                  |world           |
+--------+-------------------------------------------------+----------------+

💡 为何要 iter.remove()

因为 select 在事件发生后,就会将相关的 key 放入 selectedKeys 集合,但不会在处理完后从 selectedKeys 集合中移除,需要我们自己编码删除。例如

  • 第一次触发了 ssckey 上的 accept 事件,没有移除 ssckey

  • 第二次触发了 sckey 上的 read 事件,但这时 selectedKeys 中还有上次的 ssckey ,在处理时因为没有真正的 serverSocket 连上了,就会导致空指针异常

💡 cancel 的作用

cancel 会取消注册在 selector 上的 channel,并从 keys 集合中删除 key 后续不会再监听事件

⚠️ 不处理边界的问题

以前有同学写过这样的代码,思考注释中两个问题,以 bio 为例,其实 nio 道理是一样的

public class Server {public static void main(String[] args) throws IOException {ServerSocket ss=new ServerSocket(9000);while (true) {Socket s = ss.accept();InputStream in = s.getInputStream();// 这里这么写,有没有问题byte[] arr = new byte[4];while(true) {int read = in.read(arr);// 这里这么写,有没有问题if(read == -1) {break;}System.out.println(new String(arr, 0, read));}}}
}

客户端

public class Client {public static void main(String[] args) throws IOException {Socket max = new Socket("localhost", 9000);OutputStream out = max.getOutputStream();out.write("hello".getBytes());out.write("world".getBytes());out.write("你好".getBytes());max.close();}
}

输出

hell
owor
ld�
�好

为什么?

处理消息的边界

  • 一种思路是固定消息长度,数据包大小一样,服务器按预定长度读取,缺点是浪费带宽

  • 另一种思路是按分隔符拆分,缺点是效率低

  • TLV 格式,即 Type 类型、Length 长度、Value 数据,类型和长度已知的情况下,就可以方便获取消息大小,分配合适的 buffer,缺点是 buffer 需要提前分配,如果内容过大,则影响 server 吞吐量

    • Http 1.1 是 TLV 格式

    • Http 2.0 是 LTV 格式

 


 

服务器端

private static void split(ByteBuffer source) {source.flip();for (int i = 0; i < source.limit(); i++) {// 找到一条完整消息if (source.get(i) == '\n') {int length = i + 1 - source.position();// 把这条完整消息存入新的 ByteBufferByteBuffer target = ByteBuffer.allocate(length);// 从 source 读,向 target 写for (int j = 0; j < length; j++) {target.put(source.get());}debugAll(target);}}source.compact(); // 0123456789abcdef  position 16 limit 16
}
​
public static void main(String[] args) throws IOException {// 1. 创建 selector, 管理多个 channelSelector selector = Selector.open();ServerSocketChannel ssc = ServerSocketChannel.open();ssc.configureBlocking(false);// 2. 建立 selector 和 channel 的联系(注册)// SelectionKey 就是将来事件发生后,通过它可以知道事件和哪个channel的事件SelectionKey sscKey = ssc.register(selector, 0, null);// key 只关注 accept 事件sscKey.interestOps(SelectionKey.OP_ACCEPT);log.debug("sscKey:{}", sscKey);ssc.bind(new InetSocketAddress(8080));while (true) {// 3. select 方法, 没有事件发生,线程阻塞,有事件,线程才会恢复运行// select 在事件未处理时,它不会阻塞, 事件发生后要么处理,要么取消,不能置之不理selector.select();// 4. 处理事件, selectedKeys 内部包含了所有发生的事件Iterator<SelectionKey> iter = selector.selectedKeys().iterator(); // accept, readwhile (iter.hasNext()) {SelectionKey key = iter.next();// 处理key 时,要从 selectedKeys 集合中删除,否则下次处理就会有问题iter.remove();log.debug("key: {}", key);// 5. 区分事件类型if (key.isAcceptable()) { // 如果是 acceptServerSocketChannel channel = (ServerSocketChannel) key.channel();SocketChannel sc = channel.accept();sc.configureBlocking(false);ByteBuffer buffer = ByteBuffer.allocate(16); // attachment// 将一个 byteBuffer 作为附件关联到 selectionKey 上SelectionKey scKey = sc.register(selector, 0, buffer);scKey.interestOps(SelectionKey.OP_READ);log.debug("{}", sc);log.debug("scKey:{}", scKey);} else if (key.isReadable()) { // 如果是 readtry {SocketChannel channel = (SocketChannel) key.channel(); // 拿到触发事件的channel// 获取 selectionKey 上关联的附件ByteBuffer buffer = (ByteBuffer) key.attachment();int read = channel.read(buffer); // 如果是正常断开,read 的方法的返回值是 -1if(read == -1) {key.cancel();} else {split(buffer);// 需要扩容if (buffer.position() == buffer.limit()) {ByteBuffer newBuffer = ByteBuffer.allocate(buffer.capacity() * 2);buffer.flip();newBuffer.put(buffer); // 0123456789abcdef3333\nkey.attach(newBuffer);}}
​} catch (IOException e) {e.printStackTrace();key.cancel();  // 因为客户端断开了,因此需要将 key 取消(从 selector 的 keys 集合中真正删除 key)}}}}
}

客户端

SocketChannel sc = SocketChannel.open();
sc.connect(new InetSocketAddress("localhost", 8080));
SocketAddress address = sc.getLocalAddress();
// sc.write(Charset.defaultCharset().encode("hello\nworld\n"));
sc.write(Charset.defaultCharset().encode("0123\n456789abcdef"));
sc.write(Charset.defaultCharset().encode("0123456789abcdef3333\n"));
System.in.read();

ByteBuffer 大小分配

  • 每个 channel 都需要记录可能被切分的消息,因为 ByteBuffer 不能被多个 channel 共同使用,因此需要为每个 channel 维护一个独立的 ByteBuffer

  • ByteBuffer 不能太大,比如一个 ByteBuffer 1Mb 的话,要支持百万连接就要 1Tb 内存,因此需要设计大小可变的 ByteBuffer

    • 一种思路是首先分配一个较小的 buffer,例如 4k,如果发现数据不够,再分配 8k 的 buffer,将 4k buffer 内容拷贝至 8k buffer,优点是消息连续容易处理,缺点是数据拷贝耗费性能,参考实现 Java Resizable Array

    • 另一种思路是用多个数组组成 buffer,一个数组不够,把多出来的内容写入新的数组,与前面的区别是消息存储不连续解析复杂,优点是避免了拷贝引起的性能损耗

4.5 处理 write 事件

一次无法写完例子

  • 非阻塞模式下,无法保证把 buffer 中所有数据都写入 channel,因此需要追踪 write 方法的返回值(代表实际写入字节数)

  • 用 selector 监听所有 channel 的可写事件,每个 channel 都需要一个 key 来跟踪 buffer,但这样又会导致占用内存过多,就有两阶段策略

    • 当消息处理器第一次写入消息时,才将 channel 注册到 selector 上

    • selector 检查 channel 上的可写事件,如果所有的数据写完了,就取消 channel 的注册

    • 如果不取消,会每次可写均会触发 write 事件

public class WriteServer {
​public static void main(String[] args) throws IOException {ServerSocketChannel ssc = ServerSocketChannel.open();ssc.configureBlocking(false);ssc.bind(new InetSocketAddress(8080));
​Selector selector = Selector.open();ssc.register(selector, SelectionKey.OP_ACCEPT);
​while(true) {selector.select();
​Iterator<SelectionKey> iter = selector.selectedKeys().iterator();while (iter.hasNext()) {SelectionKey key = iter.next();iter.remove();if (key.isAcceptable()) {SocketChannel sc = ssc.accept();sc.configureBlocking(false);SelectionKey sckey = sc.register(selector, SelectionKey.OP_READ);// 1. 向客户端发送内容StringBuilder sb = new StringBuilder();for (int i = 0; i < 3000000; i++) {sb.append("a");}ByteBuffer buffer = Charset.defaultCharset().encode(sb.toString());int write = sc.write(buffer);// 3. write 表示实际写了多少字节System.out.println("实际写入字节:" + write);// 4. 如果有剩余未读字节,才需要关注写事件if (buffer.hasRemaining()) {// read 1  write 4// 在原有关注事件的基础上,多关注 写事件sckey.interestOps(sckey.interestOps() + SelectionKey.OP_WRITE);// 把 buffer 作为附件加入 sckeysckey.attach(buffer);}} else if (key.isWritable()) {ByteBuffer buffer = (ByteBuffer) key.attachment();SocketChannel sc = (SocketChannel) key.channel();int write = sc.write(buffer);System.out.println("实际写入字节:" + write);if (!buffer.hasRemaining()) { // 写完了key.interestOps(key.interestOps() - SelectionKey.OP_WRITE);key.attach(null);}}}}}
}

客户端

public class WriteClient {public static void main(String[] args) throws IOException {Selector selector = Selector.open();SocketChannel sc = SocketChannel.open();sc.configureBlocking(false);sc.register(selector, SelectionKey.OP_CONNECT | SelectionKey.OP_READ);sc.connect(new InetSocketAddress("localhost", 8080));int count = 0;while (true) {selector.select();Iterator<SelectionKey> iter = selector.selectedKeys().iterator();while (iter.hasNext()) {SelectionKey key = iter.next();iter.remove();if (key.isConnectable()) {System.out.println(sc.finishConnect());} else if (key.isReadable()) {ByteBuffer buffer = ByteBuffer.allocate(1024 * 1024);count += sc.read(buffer);buffer.clear();System.out.println(count);}}}}
}

💡 write 为何要取消

只要向 channel 发送数据时,socket 缓冲可写,这个事件会频繁触发,因此应当只在 socket 缓冲区写不下时再关注可写事件,数据写完之后再取消关注

4.6 更进一步

💡 利用多线程优化

现在都是多核 cpu,设计时要充分考虑别让 cpu 的力量被白白浪费

前面的代码只有一个选择器,没有充分利用多核 cpu,如何改进呢?

分两组选择器

  • 单线程配一个选择器,专门处理 accept 事件,只关注连接事件

  • 创建 cpu 核心数的线程,每个线程配一个选择器,轮流处理 read 事件和write事件

服务器端代码:

package com.kjz.nio.c4;import lombok.extern.slf4j.Slf4j;import java.io.IOException;
import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.nio.channels.*;
import java.util.Iterator;
import java.util.concurrent.ConcurrentLinkedQueue;
import java.util.concurrent.atomic.AtomicInteger;import static com.kjz.nio.c2.ByteBufferUtil.debugAll;@Slf4j
public class MultiThreadServer {public static void main(String[] args) throws IOException {Thread.currentThread().setName("boss");ServerSocketChannel ssc = ServerSocketChannel.open();ssc.configureBlocking(false);Selector boss = Selector.open();SelectionKey bossKey = ssc.register(boss, 0, null);bossKey.interestOps(SelectionKey.OP_ACCEPT);ssc.bind(new InetSocketAddress(8080));// 1. 创建固定数量的 worker 并初始化Worker[] workers = new Worker[Runtime.getRuntime().availableProcessors()];for (int i = 0; i < workers.length; i++) {workers[i] = new Worker("worker-" + i);}AtomicInteger index = new AtomicInteger();while(true) {boss.select();Iterator<SelectionKey> iter = boss.selectedKeys().iterator();while (iter.hasNext()) {SelectionKey key = iter.next();iter.remove();if (key.isAcceptable()) {SocketChannel sc = ssc.accept();sc.configureBlocking(false);log.debug("connected...{}", sc.getRemoteAddress());// 2. 关联 selectorlog.debug("before register...{}", sc.getRemoteAddress());// round robin 轮询workers[index.getAndIncrement() % workers.length].register(sc); // boss 调用 初始化 selector , 启动 worker-0log.debug("after register...{}", sc.getRemoteAddress());}}}}//使用另外一个线程创建专门监听读写事件的Selectorstatic class Worker implements Runnable{private Thread thread;private Selector selector;private String name;private volatile boolean start = false; // 还未初始化//队列用于在线程之间传递数据private ConcurrentLinkedQueue<Runnable> queue = new ConcurrentLinkedQueue<>();public Worker(String name) {this.name = name;}// 初始化线程和selectorpublic void register(SocketChannel sc) throws IOException {if(!start) {selector = Selector.open();thread = new Thread(this, name);thread.start();start = true;}//向队列添加了任务,但是任务中的代码并没有立即执行,要保证任务中的代码在同一线程下先执行//selector.select()再执行 sc.register(selector,SelectionKey.OP_READ,null)//以此来保证selector.select()和  sc.register(selector,SelectionKey.OP_READ,null)不会相互阻塞
//            queue.add(()->{
//                try {
//                    sc.register(selector,SelectionKey.OP_READ,null);
//                } catch (ClosedChannelException e) {
//                    e.printStackTrace();
//                }
//            });// 唤醒 select 方法 ,防止下面的run方法中 selector.select()在初始化注册读事件时阻塞
//            selector.wakeup();
//            sc.register(selector, SelectionKey.OP_READ, null); // bossselector.wakeup();sc.register(selector,SelectionKey.OP_READ,null);}@Overridepublic void run() {while(true) {try {//监听事件selector.select(); // worker-0  阻塞,此时register方法就不能执行了
//                    Runnable task = queue.poll();
//                    if (task != null) {
//                        //执行任务队列中的方法
//                        task.run();
//                    }Iterator<SelectionKey> iter = selector.selectedKeys().iterator();while (iter.hasNext()) {SelectionKey key = iter.next();iter.remove();if (key.isReadable()) {ByteBuffer buffer = ByteBuffer.allocate(16);SocketChannel channel = (SocketChannel) key.channel();log.debug("read...{}", channel.getRemoteAddress());channel.read(buffer);buffer.flip();debugAll(buffer);}}} catch (IOException e) {e.printStackTrace();}}}}
}
💡 如何拿到 cpu 个数
  • Runtime.getRuntime().availableProcessors() 如果工作在 docker 容器下,因为容器不是物理隔离的,会拿到物理 cpu 个数,而不是容器申请时的个数

  • 这个问题直到 jdk 10 才修复,使用 jvm 参数 UseContainerSupport 配置, 默认开启

4.7 UDP

  • UDP 是无连接的,client 发送数据不会管 server 是否开启

  • server 这边的 receive 方法会将接收到的数据存入 byte buffer,但如果数据报文超过 buffer 大小,多出来的数据会被默默抛弃

首先启动服务器端

public class UdpServer {public static void main(String[] args) {try (DatagramChannel channel = DatagramChannel.open()) {channel.socket().bind(new InetSocketAddress(9999));System.out.println("waiting...");ByteBuffer buffer = ByteBuffer.allocate(32);channel.receive(buffer);buffer.flip();debug(buffer);} catch (IOException e) {e.printStackTrace();}}
}

输出

waiting...

运行客户端

public class UdpClient {public static void main(String[] args) {try (DatagramChannel channel = DatagramChannel.open()) {ByteBuffer buffer = StandardCharsets.UTF_8.encode("hello");InetSocketAddress address = new InetSocketAddress("localhost", 9999);channel.send(buffer, address);} catch (Exception e) {e.printStackTrace();}}
}

接下来服务器端输出

         +-------------------------------------------------+|  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 68 65 6c 6c 6f                                  |hello           |
+--------+-------------------------------------------------+----------------+

5. NIO vs BIO

5.1 stream vs channel

  • stream 不会自动缓冲数据,channel 会利用系统提供的发送缓冲区、接收缓冲区(更为底层

  • stream 仅支持阻塞 API,channel 同时支持阻塞、非阻塞 API,网络 channel 可配合 selector 实现多路复用

  • 二者均为全双工,即读写可以同时进行

5.2 IO 模型

同步阻塞、同步非阻塞、同步多路复用、异步阻塞(没有此情况)、异步非阻塞

  • 同步:线程自己去获取结果(一个线程)

  • 异步:线程自己不去获取结果,而是由其它线程送结果(至少两个线程)

当调用一次 channel.read 或 stream.read 后,会切换至操作系统内核态来完成真正数据读取,而读取又分为两个阶段,分别为:

  • 等待数据阶段

  • 复制数据阶段

8a2089a9d694487694fbd86e83a8573e.png

  • 阻塞 IO

8c3242cb357c424481cb0b373966d1e8.png

用户线程在读取数据时被阻塞,在阻塞过程中,用户线程无法干其他的事

  • 非阻塞 IO

458f1211876f4d318eccef0104c7197d.png

向内核空间读取数据时如果没有数据就会立即返回,用户线程中的读方法被while(true)包裹,用户线程会不断向内核空间读取,一旦有数据就会进入到复制数据,在等待数据的过程中是非阻塞的,但是复制数据的过程是非阻塞的。

  • 多路复用

400bb7923eda4b8ca6c6c6ee3932bd2d.png

  • 信号驱动

  • 异步 IO

43720b4f57f045c29efdd9dd8ac7c4aa.png

同步:线程自己去获取结果(一个线程亲力亲为

异步:线程自己不去获取结果,而是由其他线程送结果(至少两个线程

异步情况下线程一定是非阻塞

  • 阻塞 IO vs 多路复用

e4fe955b96014b9a8af6c121030317dc.png

在阻塞IO下如果read阻塞在channel1的读取数据中,那么此时另外一个channel2如果过来要建立连接accept,那么这个accept方法就要阻塞到read方法执行完毕才能执行。也就是说阻塞IO在同一时间只能处理一个channel的事件。

09973d3312c34de48242a7ca8835c6ed.png

在多路复用的情况下,则是select方法是阻塞的,它会返回多个channel的事件,在SelectionKey的集合中处理多个channel事件,可以同时应对多个channel事件

🔖 参考

UNIX 网络编程 - 卷 I

5.3 零拷贝(从文件传输的角度来看)

传统 IO 问题

传统的 IO 将一个文件通过 socket 写出

File f = new File("helloword/data.txt");
RandomAccessFile file = new RandomAccessFile(file, "r");
​
byte[] buf = new byte[(int)f.length()];
file.read(buf);
​
Socket socket = ...;
socket.getOutputStream().write(buf);

内部工作流程是这样的:

e23789830fc84ad3aa45c321c1b07f73.png

  1. java 本身并不具备 IO 读写能力,因此 read 方法调用后,要从 java 程序的用户态切换至内核态,去调用操作系统(Kernel)的读能力,将数据读入内核缓冲区。这期间用户线程阻塞,操作系统使用 DMA(Direct Memory Access)来实现文件读,其间也不会使用 cpu

    DMA 也可以理解为硬件单元,用来解放 cpu 完成文件 IO

  2. 内核态切换回用户态,将数据从内核缓冲区读入用户缓冲区(即 byte[] buf),这期间 cpu 会参与拷贝,无法利用 DMA

  3. 调用 write 方法,这时将数据从用户缓冲区(byte[] buf)写入 socket 缓冲区,cpu 会参与拷贝

  4. 接下来要向网卡写数据,这项能力 java 又不具备,因此又得从用户态切换至内核态,调用操作系统的写能力,使用 DMA 将 socket 缓冲区的数据写入网卡,不会使用 cpu

可以看到中间环节较多,java 的 IO 实际不是物理设备级别的读写,而是缓存的复制,底层的真正读写是操作系统来完成的

  • 用户态与内核态的切换发生了 3 次,这个操作比较重量级

  • 数据拷贝了共 4 次

NIO 优化

通过 DirectByteBuf

  • ByteBuffer.allocate(10) HeapByteBuffer 使用的还是 java 内存

  • ByteBuffer.allocateDirect(10) DirectByteBuffer 使用的是操作系统内存

58d3756eaff3492fa4f607d9e162e193.png

大部分步骤与优化前相同,不再赘述。唯有一点:java 可以使用 DirectByteBuf 将堆外内存映射到 jvm 内存中来直接访问使用

  • 这块内存不受 jvm 垃圾回收的影响,因此内存地址固定,有助于 IO 读写

  • java 中的 DirectByteBuf 对象仅维护了此内存的虚引用,内存回收分成两步

    • DirectByteBuf 对象被垃圾回收,将虚引用加入引用队列

    • 通过专门线程访问引用队列,根据虚引用释放堆外内存

  • 减少了一次数据拷贝,用户态与内核态的切换次数没有减少

进一步优化(底层采用了 linux 2.1 后提供的 sendFile 方法),java 中对应着两个 channel 调用 transferTo/transferFrom 方法拷贝数据

2ad9f2e8d9fa437489bb99b83d52658e.png

  1. java 调用 transferTo 方法后,要从 java 程序的用户态切换至内核态,使用 DMA将数据读入内核缓冲区,不会使用 cpu

  2. 数据从内核缓冲区传输到 socket 缓冲区,cpu 会参与拷贝

  3. 最后使用 DMA 将 socket 缓冲区的数据写入网卡,不会使用 cpu

可以看到

  • 只发生了一次用户态与内核态的切换

  • 数据拷贝了 3 次

进一步优化(linux 2.4)

1183d91b62584bcd99fb0e157e39ad23.png

  1. java 调用 transferTo 方法后,要从 java 程序的用户态切换至内核态,使用 DMA将数据读入内核缓冲区,不会使用 cpu

  2. 只会将一些 offset(偏移量) 和 length(长度) 信息拷入 socket 缓冲区,几乎无消耗

  3. 使用 DMA 将 内核缓冲区的数据写入网卡,不会使用 cpu

整个过程仅只发生了一次用户态与内核态的切换,数据拷贝了 2 次。所谓的【零拷贝】,并不是真正无拷贝,而是在不会拷贝重复数据到 jvm 内存中,零拷贝的优点有

  • 更少的用户态与内核态的切换

  • 不利用 cpu 计算,减少 cpu 缓存伪共享

  • 零拷贝适合小文件传输

5.3 AIO

AIO 用来解决数据复制阶段的阻塞问题

  • 同步意味着,在进行读写操作时,线程需要等待结果,还是相当于闲置

  • 异步意味着,在进行读写操作时,线程不必等待结果,而是将来由操作系统来通过回调方式由另外的线程来获得结果

异步模型需要底层操作系统(Kernel)提供支持

  • Windows 系统通过 IOCP 实现了真正的异步 IO

  • Linux 系统异步 IO 在 2.6 版本引入,但其底层实现还是用多路复用模拟了异步 IO性能没有优势

文件 AIO

先来看看 AsynchronousFileChannel

@Slf4j
public class AioDemo1 {public static void main(String[] args) throws IOException {try{AsynchronousFileChannel s = AsynchronousFileChannel.open(Paths.get("1.txt"), StandardOpenOption.READ);ByteBuffer buffer = ByteBuffer.allocate(2);log.debug("begin...");s.read(buffer, 0, null, new CompletionHandler<Integer, ByteBuffer>() {@Overridepublic void completed(Integer result, ByteBuffer attachment) {log.debug("read completed...{}", result);buffer.flip();debug(buffer);}
​@Overridepublic void failed(Throwable exc, ByteBuffer attachment) {log.debug("read failed...");}});
​} catch (IOException e) {e.printStackTrace();}log.debug("do other things...");System.in.read();}
}

输出

13:44:56 [DEBUG] [main] c.i.aio.AioDemo1 - begin...
13:44:56 [DEBUG] [main] c.i.aio.AioDemo1 - do other things...
13:44:56 [DEBUG] [Thread-5] c.i.aio.AioDemo1 - read completed...2+-------------------------------------------------+|  0  1  2  3  4  5  6  7  8  9  a  b  c  d  e  f |
+--------+-------------------------------------------------+----------------+
|00000000| 61 0d                                           |a.              |
+--------+-------------------------------------------------+----------------+

可以看到

  • 响应文件读取成功的是另一个线程 Thread-5

  • 主线程并没有 IO 操作阻塞

💡 守护线程

默认文件 AIO 使用的线程都是守护线程,所以最后要执行 System.in.read() 以避免守护线程意外结束

网络 AIO

public class AioServer {public static void main(String[] args) throws IOException {AsynchronousServerSocketChannel ssc = AsynchronousServerSocketChannel.open();ssc.bind(new InetSocketAddress(8080));ssc.accept(null, new AcceptHandler(ssc));System.in.read();}
​private static void closeChannel(AsynchronousSocketChannel sc) {try {System.out.printf("[%s] %s close\n", Thread.currentThread().getName(), sc.getRemoteAddress());sc.close();} catch (IOException e) {e.printStackTrace();}}
​private static class ReadHandler implements CompletionHandler<Integer, ByteBuffer> {private final AsynchronousSocketChannel sc;
​public ReadHandler(AsynchronousSocketChannel sc) {this.sc = sc;}
​@Overridepublic void completed(Integer result, ByteBuffer attachment) {try {if (result == -1) {closeChannel(sc);return;}System.out.printf("[%s] %s read\n", Thread.currentThread().getName(), sc.getRemoteAddress());attachment.flip();System.out.println(Charset.defaultCharset().decode(attachment));attachment.clear();// 处理完第一个 read 时,需要再次调用 read 方法来处理下一个 read 事件sc.read(attachment, attachment, this);} catch (IOException e) {e.printStackTrace();}}
​@Overridepublic void failed(Throwable exc, ByteBuffer attachment) {closeChannel(sc);exc.printStackTrace();}}
​private static class WriteHandler implements CompletionHandler<Integer, ByteBuffer> {private final AsynchronousSocketChannel sc;
​private WriteHandler(AsynchronousSocketChannel sc) {this.sc = sc;}
​@Overridepublic void completed(Integer result, ByteBuffer attachment) {// 如果作为附件的 buffer 还有内容,需要再次 write 写出剩余内容if (attachment.hasRemaining()) {sc.write(attachment);}}
​@Overridepublic void failed(Throwable exc, ByteBuffer attachment) {exc.printStackTrace();closeChannel(sc);}}
​private static class AcceptHandler implements CompletionHandler<AsynchronousSocketChannel, Object> {private final AsynchronousServerSocketChannel ssc;
​public AcceptHandler(AsynchronousServerSocketChannel ssc) {this.ssc = ssc;}
​@Overridepublic void completed(AsynchronousSocketChannel sc, Object attachment) {try {System.out.printf("[%s] %s connected\n", Thread.currentThread().getName(), sc.getRemoteAddress());} catch (IOException e) {e.printStackTrace();}ByteBuffer buffer = ByteBuffer.allocate(16);// 读事件由 ReadHandler 处理sc.read(buffer, buffer, new ReadHandler(sc));// 写事件由 WriteHandler 处理sc.write(Charset.defaultCharset().encode("server hello!"), ByteBuffer.allocate(16), new WriteHandler(sc));// 处理完第一个 accpet 时,需要再次调用 accept 方法来处理下一个 accept 事件ssc.accept(null, this);}
​@Overridepublic void failed(Throwable exc, Object attachment) {exc.printStackTrace();}}
}

学习完NIO的基础知识,接下来正式进入Netty的学习,请看这篇博客:Netty入门-CSDN博客

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/795574.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Oracle 中 where 和 on 的区别

1.Oracle 中 where 和 on 的区别 on&#xff1a;会先根据on后面的条件进行筛选&#xff0c;条件为真时返回该行&#xff0c;由于on的优先级高于left join&#xff0c;所以left join关键字会把左表中没有匹配的所有行也都返回&#xff0c;然后生成临时表返回,执行优先级高于…

计算机接口(部分实验)

;实验三&#xff1a; ;*******************************; ;* 8255方式0的C口输入,A口输出 *; ;*******************************; io8255a equ 288h io8255c equ 28ah io8255 equ 28bhcode segmentassume cs:code start: mov dx, 28bH ;设8255为…

FPGA高端项目:解码索尼IMX327 MIPI相机+2路视频融合叠加,提供开发板+工程源码+技术支持

目录 1、前言2、相关方案推荐本博主所有FPGA工程项目-->汇总目录我这里已有的 MIPI 编解码方案 3、本 MIPI CSI-RX IP 介绍4、个人 FPGA高端图像处理开发板简介5、详细设计方案设计原理框图IMX327 及其配置MIPI CSI RX图像 ISP 处理HLS多路视频融合叠加图像缓存HDMI输出工程…

【51单片机入门记录】RTC(实时时钟)-DS1302应用

目录 一、DS1302相关写函数 &#xff08;1&#xff09;Write&#xff3f;Ds1302 &#xff08;2&#xff09;Write&#xff3f;Ds1302&#xff3f;Byte 二、DS130相关数据操作流程及相关代码 &#xff08;1&#xff09;DS1302初始化数据操作流程及相关代码 (shijian[i]/10&…

20240406在Ubuntu20.04下让移远的4G模块EC200A-CN通过USB底板直接上网

20240406在Ubuntu20.04下让移远的4G模块EC200A-CN通过USB底板直接上网 2024/4/6 15:42 缘起&#xff1a;最近在调试全志H3平台在linux&#xff08;Ubuntu Core/openWRT&#xff09;下适配EC200A-CN。 以前调试移远的EC20的时候是先在Ubuntu下确认模块时好的&#xff0c;然后再开…

最新在线工具箱网站系统源码

内容目录 一、详细介绍二、效果展示1.部分代码2.效果图展示 三、学习资料下载 一、详细介绍 系统内置高达72种站长工具、开发工具、娱乐工具等功能。此系统支持本地调用API&#xff0c;同时还自带免费API接口&#xff0c; 是一个多功能性工具程序&#xff0c;支持后台管理、上…

蓝凌OA单点登录实现方案:以统一身份管理提升效率与安全新举措

蓝凌OA的优势与挑战 在数字化浪潮的推动下&#xff0c;企业对于高效、安全的身份管理需求愈发迫切。蓝凌OA系统&#xff0c;以其出色的流程管理和协同办公能力&#xff0c;已经成为众多企业实现数字化转型的重要工具。然而&#xff0c;随着企业信息化建设的不断深入&#xff0…

配置vscode链接linux

1.安装 remote SSH 2.按F1 ssh ljh服务器公网ip 3. 选择保存远端host到本地 某位置 等待片刻后 4. 切换到远程资源管理器中 应该可以看到一台电脑&#xff0c;右键在当前窗口链接&#xff0c;输入你的服务器用户密码后电脑变绿说明远程连接成功 5.一定要登陆上云服务器后再…

错误:找不到或无法加载主类(vscode的解决方法)

项目场景&#xff1a; 某天&#xff0c;喵某人在敲代码的过程中&#xff0c;点击运行代码&#xff0c;突然显示找不到或无法加载主类。之前创建的java文件都可以正常运行。但新建的java文件无论是什么&#xff0c;点击运行都会显示“错误&#xff1a;找不到或无法加载主类”。 …

深入剖析:HTML页面从用户请求到完整呈现的多阶段加载与渲染全流程详解

HTML页面的加载全过程是一个涉及网络通信、文件解析、资源加载、渲染树构建、布局计算以及最终绘制等多个环节的复杂过程。以下是详细的步骤说明&#xff1a; 1. 用户输入URL并发送请求 用户在浏览器地址栏输入一个URL&#xff08;统一资源定位符&#xff09;&#xff0c;或者…

【内存泄漏】数据库连接connectionPhantomRefs内存过大

1. 问题背景 线上出现内存报警&#xff0c;内存增长曲线如下 dump内存文件&#xff0c;临时重新发布服务。后经排查发现是数据库连接池设置不合理以及mysql-connector-java 5.1.49有内存泄漏bug。以下为对此问题的分析及问题总结。 1.1 应用背景 数据库连接池&#xff1a; …

[StartingPoint][Tier1]Ignition

Task 1 Which service version is found to be running on port 80? (发现哪个服务版本在端口 80 上运行&#xff1f;) $ nmap -sV -Pn 10.129.1.27 -p 80 nginx 1.14.2 Task 2 What is the 3-digit HTTP status code returned when you visit http://{machine IP}/? (访…

Centos7下docker安装jenkins

个人记录 安装Docker与Docker-compose Centos7安装Docker与Docker-compose【图文教程】 配置docker-compose.yml vim docker-compose.yml按i进行编辑模式&#xff0c;粘贴如下内容 version: 3 services:jenkins:image: jenkinsci/blueoceancontainer_name: jenkinsrestart…

剑指Offer题目笔记26(动态规划的基础知识)

面试题88&#xff1a; 问题&#xff1a; ​ 一个数组cost的所有数字都是正数&#xff0c;它的第i个数字表示在一个楼梯的第i级台阶往上爬的成本&#xff0c;在支付了成本cost[i]之后可以从第i级台阶往上爬1级或2级。请计算爬上该楼梯的最少成本。 解决方案一&#xff1a;&…

Java | Leetcode Java题解之第9题回文数

题目&#xff1a; 题解&#xff1a; class Solution {public boolean isPalindrome(int x) {// 特殊情况&#xff1a;// 如上所述&#xff0c;当 x < 0 时&#xff0c;x 不是回文数。// 同样地&#xff0c;如果数字的最后一位是 0&#xff0c;为了使该数字为回文&#xff0…

Linux:数据链路层

文章目录 路由表数据链路层分片mac帧报头ARP协议ARP的周边话题 路由表 当主机a想要发送消息到主机b&#xff0c;这一整个过程中&#xff0c;数据报文在进行传输的过程实际上是一跳一跳的过去的&#xff0c;而报文可能会经过公网进行传递&#xff0c;本质上这些网络都是靠对应的…

【python毕业设计】基于Python的医院信息管理系统的设计与实现(源码+数据库+毕业论文)【独一无二】

&#x1f449;博__主&#x1f448;&#xff1a;米码收割机 &#x1f449;技__能&#x1f448;&#xff1a;C/Python语言 &#x1f449;公众号&#x1f448;&#xff1a;测试开发自动化【获取源码商业合作】 &#x1f449;荣__誉&#x1f448;&#xff1a;阿里云博客专家博主、5…

Google视觉机器人超级汇总:从RT、RT-2到AutoRT、SARA-RT、RT-Trajectory

前言 随着对视觉语言机器人研究的深入&#xff0c;发现Google的工作很值得深挖&#xff0c;比如RT-2 ​想到很多工作都是站在Google的肩上做产品和应用&#xff0c;​Google真是科技进步的核心推动力&#xff0c;做了大量大模型的基础设施&#xff0c;服 故有了本文&#xf…

【前端Vue】Vue0基础完整教程第5篇:vue指令(下),成绩案例【附代码文档】

Vue从0基础到大神学习完整教程完整教程&#xff08;附代码资料&#xff09;主要内容讲述&#xff1a;vue基本概念&#xff0c;vue-cli的使用&#xff0c;vue的插值表达式&#xff0c;{{ gaga }}&#xff0c;{{ if (obj.age > 18 ) { } }}&#xff0c;vue指令&#xff0c;综合…

更高效、更简洁的 SQL 语句编写丨DolphinDB 基于宏变量的元编程模式详解

元编程&#xff08;Metaprogramming&#xff09;指在程序运行时操作或者创建程序的一种编程技术&#xff0c;简而言之就是使用代码编写代码。通过元编程将原本静态的代码通过动态的脚本生成&#xff0c;使程序员可以创建更加灵活的代码以提升编程效率。 在 DolphinDB 中&#…