使用 LLMLingua-2 压缩 GPT-4 和 Claude 提示

原文地址:Compress GPT-4 and Claude prompts with LLMLingua-2

2024 年 4 月 1 日

向大型语言模型(LLM)发送的提示长度越短,推理速度就会越快,成本也会越低。因此,提示压缩已经成为LLM研究的热门领域。

在最新的一篇论文中,清华大学和微软的研究人员介绍了一种新的与任务无关的提示压缩技术——LLMLingua-2。LLMLingua-2比其他提示压缩方法更快、更高效,且需要的计算资源更少。对于涉及冗长提示的LLM应用来说,它可以成为一个很好的工具,压缩可以节省大量成本并改善用户体验。

微信截图_20240403110434

任务相关的和任务无关的提示压缩

诸如思维链(CoT)推理、上下文学习和检索增强生成(RAG)等技术使LLM能够处理复杂的任务和未在训练数据中包含的知识。

然而,冗长提示的好处是以增加计算和财务需求为代价的。在某些LLM中,更长的提示可能会降低模型处理上下文信息的能力的准确性。

提示压缩通过缩短原始文本同时保留必要信息来解决这些问题。提示压缩的基本假设是,自然语言包含冗余,这些冗余对人类理解可能有用,但对LLM来说则不必要。

提示压缩可以分为“任务相关”和“任务无关”两种方法。任务相关的压缩方法会根据下游任务或当前查询来移除提示中的令牌。一种流行的方法是LongLLMLingua,它采用一种问题相关的多步骤方法,估计令牌的信息熵并移除冗余部分。其他方法使用强化学习来训练一个模型,基于下游任务提供的奖励信号来压缩提示。任务相关压缩方法的权衡之处在于它们在其他任务上的泛化能力有限。

另一方面,任务无关的方法在压缩提示时不考虑具体任务,使其更适用于更广泛的应用和黑盒LLM。一些任务无关的方法包括LLMLingua和Selective-Context。这些方法使用因果小型语言模型(SLM),如Llama-7B,来评估令牌或词汇单元的信息熵,并移除那些不增加有意义信息的部分。

LLMLingua-2是由原始LLMLingua的作者开发的,是一种任务无关的提示压缩技术。

LLMLingua-2的工作原理

当前的任务无关压缩方法存在一些局限性,这促使研究人员创建了LLMLingua的继任者。

“信息熵可能是一个次优的压缩指标,因为(一)它与提示压缩目标不一致;(二)它只利用单向上下文,可能无法捕获提示压缩所需的所有必要信息。”微软高级研究员、论文合著者钱慧武(Qianhui Wu)表示。

LLMLingua-2将提示压缩重新定义为分类任务,即确定每个令牌是否应该保留或丢弃。它利用这种任务定义来创建提示压缩训练数据集。然后,它使用数据集来训练一个用于压缩任务的轻量级双向转换器编码器模型。

“通过这种方式,它可以从完整的双向上下文中捕获提示压缩所需的所有必要信息,并保证压缩后的提示与原始提示保持一致。”

LLMLingua-2具有几个关键优势。首先,使用双向编码器可以确保捕获提示压缩所需的所有必要信息。其次,由于它使用较小的转换器模型来学习压缩目标,因此具有显著较低的延迟。第三,它的设计旨在保持对原始提示的忠实度,避免幻觉。

训练压缩模型

为了生成用于训练提示压缩模型的数据集,研究人员使用数据蒸馏程序从强大的LLM中提取知识。他们向GPT-4提供提示,并指示它在保留必要信息并避免幻觉的同时减少令牌。

在获得原始文本及其压缩版本的配对后,他们为每个原始文本中的令牌分配一个二进制标签,以确定在压缩后是否应保留或丢弃它。研究人员使用MeetingBank数据集创建了训练示例。

然后,他们在数据集上训练了xlm-roberta-large和multilingual-BERT转换器模型的略微修改版本,以将令牌分类为“保留”或“丢弃”。基于BERT的模型的优势在于,它们学习双向特征,而不是仅具有先前令牌知识的自回归解码器模型。这允许压缩模型学习更丰富的相关性,从而实现更好的压缩。

“在推理过程中,我们根据分类模型计算的概率来确定是否保留或丢弃原始提示中的每个令牌。”研究人员写道。

LLMLingua-2 蒸馏提示

LLMLingua-2的实际应用

研究人员在MeetingBank数据集以及几个领域外数据集(如LongBench、ZeroScrolls、GSM8K和Big Bench Hard)上测试了压缩模型。他们使用GPT-3.5-Turbo作为目标模型。但压缩模型也可以与前沿模型(如GPT-4和Claude 3)一起使用。他们还将LLMLingua-2的压缩、速度和准确性与其他方法以及原始提示进行了比较。

他们的研究结果表明,尽管LLMLingua-2的体积较小,但其压缩性能优于其他任务无关基线,并从GPT-3.5-Turbo到Mistral-7B具有良好的泛化能力。

LLM-Lingua-2实现了2-5倍的压缩率,比现有的提示压缩方法快3-6倍。这意味着,当用于需要长系统和上下文提示的应用程序时,它可以节省大量成本。LLMLingua-2还将延迟降低了1.6-2.9倍,并可将GPU内存成本降低8倍。

有趣的是,当使用Mistral-7B作为目标LLM时,研究人员发现LLMLingua-2的性能甚至优于原始提示。“我们推测,Mistral-7B可能在管理长上下文方面不如GPT-3.5-Turbo擅长。我们的方法通过提供具有更高信息密度的较短提示,有效地提高了Mistral-7B的最终推理性能。”研究人员在论文中写道。

“LLMLingua-2是一种与任务无关的提示压缩方法。”吴说。“这意味着,每当您遇到过长的上下文时,都可以使用LLMLingua-2将其压缩为较短的上下文,以适应有限的上下文窗口,减少财务成本(因为OpenAI根据令牌向用户收费),并减少LLM的推理时间。”

然而,与LongLLMlingua等任务感知压缩方法相比,LLMLingua-2在特定任务上表现不佳。

“我们将这种性能差距归因于[任务感知方法]从问题中获取的额外信息。”研究人员写道。“但是,我们的模型的与任务无关特性使其成为一种高效且具有良好泛化能力的选择,可以部署到不同场景中。”

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/795100.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ensp华为AC+AP上线配置

AR1配置&#xff1a; <Huawei>system-view # 进入系统视图<Huawei>sysname R1 # 设备重命名[R1]dhcp enable # 开启DHCP功能[R1]interface GigabitEthernet0/0/0 # 进入接口 [R1-GigabitEthernet0/0/0]ip address 192.168.0.1 23 # 配置接口地址 [R1-GigabitE…

SpringBoot配置文件加载的优先级顺序

SpringBoot配置文件加载的优先级顺序 1.按文件类型2.按路径比较3.按命令行参数设置 1.按文件类型 SpringBoot的配置文件可以分为.properties .yml .yaml 在同一路径下&#xff08;比如都在classpath下&#xff09;三者的优先级顺序是.properties> .yml> .yaml 2.按路径…

基于tensorflow和kereas的孪生网络推理图片相似性

一、环境搭建 基础环境&#xff1a;cuda 11.2 python3.8.13 linux ubuntu18.04 pip install tensorflow-gpu2.11.0 验证&#xff1a;# 查看tensorflow版本 import tensorflow as tf tf.__version__ # 是否能够成功启动GPU from tensorflow.python.client import device_lib pr…

jvm基础三——类加载器

类加载器 在Java中&#xff0c;类加载器&#xff08;Class Loader&#xff09;是Java虚拟机&#xff08;JVM&#xff09;的一部分&#xff0c;负责将类文件&#xff08;.class文件&#xff09;加载到JVM中&#xff0c;使得程序能够使用这些类。类加载器在Java中具有重要的作用&…

6 种事件驱动的架构模式

事件驱动架构(Event-Driven Architecture)是一种基于事件和事件处理的软件架构&#xff0c;它的核心思想是将系统的行为和逻辑抽象成一系列事件&#xff0c;这些事件在系统中按照一定的规则和顺序产生和传播&#xff0c;并被相应的处理器处理。事件驱动架构具有高度的灵活性、可…

【数据结构】考研真题攻克与重点知识点剖析 - 第 3 篇:栈、队列和数组

前言 本文基础知识部分来自于b站&#xff1a;分享笔记的好人儿的思维导图与王道考研课程&#xff0c;感谢大佬的开源精神&#xff0c;习题来自老师划的重点以及考研真题。此前我尝试了完全使用Python或是结合大语言模型对考研真题进行数据清洗与可视化分析&#xff0c;本人技术…

LogicFlow 在HTML中的引入与使用

LogicFlow 在HTML中的引入与使用 LogicFlow的引入与使用&#xff0c;相较于BPMNJS相对容易一些&#xff0c;更加灵活一些&#xff0c;但是扩展代码可能写得更多一些。 示例展示 使用方式 这个的使用方式就简单很多了&#xff0c;利用cdn把js下载下来&#xff0c;引入到HTML文…

c语言之向main函数传递参数

在c语言中&#xff0c;main函数也是可以传递传递参数的&#xff0c;业内向main函数传递参数的格式是 main(int argc,char *argv[]) 向main函数传递参数不是通过代码传递的&#xff0c;一般是通过dos命令传递 举个例子 #include<stdio.h> void main(int argc,char *ar…

PyTorch之计算模型推理时间

一、参考资料 如何测试模型的推理速度 Pytorch 测试模型的推理速度 二、计算PyTorch模型推理时间 1. 计算CPU推理时间 import torch import torchvision import time import tqdm from torchsummary import summarydef calcCPUTime():model torchvision.models.resnet18()…

使用pip install替代conda install将packet下载到anaconda虚拟环境

问题描述 使用conda install 下载 stable_baseline3出现问题 一番搜索下是Anaconda.org缺少源 解决方法 首先使用管理员权限打开 anaconda prompt 然后激活目标环境&#xff1a;conda activate env_name 接着使用&#xff1a;conda env list查看目标env的位置 如D:\anacon…

2023.4.7 机器学习周报

目录 引言 Abstract 文献阅读 1、题目 2、引言 3、过去方案和Motivation 4、Segment Anything模型 5、创新点 6、实验过程 7、实验结果 1、评价绩效 2、检测评价 3、跟踪评价 8、 结论 总结 引言 本周阅读了一篇关于高效的任意分割模型的文献&#xff0c;用于自…

JVM基础:类的生命周期详解

JDK版本&#xff1a;jdk8 IDEA版本&#xff1a;IntelliJ IDEA 2022.1.3 文章目录 一. 生命周期概述二. 加载阶段(Loading)2.1 加载步骤2.2 查看内存中的对象 三. 连接阶段(Linking)3.1 连接之验证3.2 连接之准备3.3 连接阶段之解析 四. 初始化阶段(Initialization)4.1 单个类的…

Arcgis Pro地理配准

目录 一、目的 二、配准 1、找到配准工具 2、添加控制点 3、选择控制点 4、添加更多控制点 5、配准完成、保存 三、附录 1、查看控制点或删除控制点 2、效果不好怎么办 一、目的 下面我们将两张地图进行配准&#xff0c;其中一张有地理位置&#xff0c;而另外一张没…

前端面试高频: 理解 React/Vue 中 Key 的作用

一: 引言 在 React 或 Vue 项目中&#xff0c;我们经常在列表组件中使用key属性。key是给每一个vnode的唯一id&#xff0c;它在列表渲染和虚拟 DOM 操作中扮演着重要的角色。 当我们在渲染一个包含多个相同子组件的列表时&#xff0c;如果没有使用 key&#xff0c;React 或 Vue…

666666666666666666

欢迎关注博主 Mindtechnist 或加入【Linux C/C/Python社区】一起学习和分享Linux、C、C、Python、Matlab&#xff0c;机器人运动控制、多机器人协作&#xff0c;智能优化算法&#xff0c;滤波估计、多传感器信息融合&#xff0c;机器学习&#xff0c;人工智能等相关领域的知识和…

Linux (Ubuntu)- mysql8 部署

目录 1.基本部署 2.修改密码 3.开启root可远程连接配置 1.基本部署 01》》先查看OS类型&#xff0c;如果是Ubuntu在往下边看 rootspray:/etc/mysql/mysql.conf.d# lsb_release -a LSB Version: core-11.1.0ubuntu2-noarch:security-11.1.0ubuntu2-noarch Distributor ID: …

备战蓝桥杯---线段树应用2

来几个不那么模板的题&#xff1a; 对于删除&#xff0c;我们只要给那个元素附上不可能的值即可&#xff0c;关键问题是怎么处理序号变化的问题。 事实上&#xff0c;当我们知道每一个区间有几个元素&#xff0c;我们就可以确定出它的位置&#xff0c;因此我们可以再维护一下前…

RK3568测试

作者简介&#xff1a; 一个平凡而乐于分享的小比特&#xff0c;中南民族大学通信工程专业研究生在读&#xff0c;研究方向无线联邦学习 擅长领域&#xff1a;驱动开发&#xff0c;嵌入式软件开发&#xff0c;BSP开发 作者主页&#xff1a;一个平凡而乐于分享的小比特的个人主页…

非关系型数据库------------Redis的安装和部署

目录 一、关系型数据库与非关系型数据库 1.1关系型数据库 1.2非关系型数据库 1.2.1非关系型数据库产生背景 1.3关系型非关系型区别 1.4客户访问时&#xff0c;关系型数据库与redis的工作过程 二、Redis 2.1redis简介 2.2Redis命中机制和淘汰机制 2.3Redis 具有以下优…

树莓派安装Windows搭建网盘和下载机

0 需求分析 在同一个局域网内&#xff0c;同时有多种设备&#xff08;Windows&#xff0c;Linux&#xff0c;Android&#xff09;需要进行大量的数据共享。另外&#xff0c;还时常需要从百度网盘/夸克网盘等网盘下载文件。不难看出&#xff0c;我的需求很简单&#xff0c;就是…